
SECONDARY SCHOOL OF COMMUNICATION TECHNOLOGY

110 00 Prague 1, Panská 856/3URL : www.panska.cz

🕿 221 002 111, 🗎 221 002 666e-Mail : sekretariat@panska.cz

MATRICULATION EXAM

PRACTICAL EXAMINATION IN VOCATIONAL SUBJECTS

Hardware Omega Server

Field of study:
26-45-M/004

Digital telecommunications technology

Class: 4. AJan Kapic, Václav Košař

School year: 2006/2007 name and surname of the author

Subscribe to DeepL Pro to translate larger documents.
Visit www.DeepL.com/pro for more information.

http://www.panska.cz/
mailto:sekretariat@panska.cz
https://www.deepl.com/pro?cta=edit-document&pdf=1

- 2 -

1 ANNOTATION:

The aim of our work was to replace the Xapi server program, designed for remote

programming of the Ateus Omega control panel via the Internet, with a module that will be

built directly into the control panel, thus eliminating the problem of dependence on a

switched-on computer. Basically, it is a simple passive network card, which also

communicates w i t h t h e control panel (Serial port).

2 ANNOTATION:

The aim of our work has ordered us to substitute the Xapi server application by a

HW module, directly built in the phone exchange, which removes the problem of the

dependence on switched PC. The Xapi server is designated for distant programming of the

phone exchange Ateus Omega via Internet network. It goes in general about a simple

passive network card while this card communicates further with the phone exchange (Serial

port).

"We declare that we have prepared this thesis independently and have used the literature sources

and information cited and listed in the list of literature and information sources used."

Prague, on

Signature

- 3 -

1 INTRODUCTION - 5 -

2MONITORING LOGS - 7 -

2.1 SERIAL DATA TRANSFER - 8 -

2.1.1 SYNCHRONOUS AND ASYNCHRONOUS SERIAL TRANSMISSION - 8 -

2.1.2 SERIAL COMMUNICATION WITH ATEUS-OMEGA CONTROL PANEL - 9 -

2.1.3 DISMANTLING THE PACKET - 12 -

2. 2SPI INTERFACE - 12 -

2.2.1 DISTRIBUTION OF DEVICES ON THE SERIAL SPI BUS - 12 -

2.3 TCP/IP - 14 -

2.3.1 TCP/IP PROTOCOLS - 14 -

2.3.2 DATA IN PACKETS - 18 -

2.3. 3CRC CODES - 19 -

3INTEGRATED CIRCUIT ENC28J60 - 22 -

3.1 BASIC PARAMETERS OF ENC28J60 - 22 -

3.1.1MEMORY ENC28J60: - 24 -

3.1.2ACCESS TO ENC28J60 SPI INTERFACES: - 28 -

3.1.3 ENC2860 CONNECTION: - 29 -

3.1.4 CHECKSUM CALCULATION IN ENC28J60: - 30 -

3.1.5 WRITING TO THE PHY REGISTER (WRITE2PHYSICAL SUBROUTINE) - 31 -

3.2 DEVICE INITIALIZATION - 32 -

3.3 SENDING A PACKET - 35 -

3.4 RECEIVING PACKETS - 36 -

3.4.1 FREEING SPACE IN THE RECEIVING MEMORY - 37 -

4PROGRAM IN DSPIC30F3013 - 39 -

4.1 BASIC SUB-PROGRAMMES: - 39 -

4.2 START THE PROGRAM - 40 -

4.3 RUNNING THE PROGRAM - 40 -

4.4 HALF/FULL DUPLEX JUMPER - 41 -

4.5RESET IP - 41 -

4.6 INCOMING PACKET IDENTIFICATION - 42 -

4.7 INTERRUPTION - 43 -

- 4 -

4.7.1 UART INITIALIZATION - 43 -

4.7.2 INTERRUPT .GLOBAL RECEPTION - 43 -

4.7.3 INTERRUPTING .GLOBAL TRANSMISSIONS - 43 -

4.7.4COUNTING CRC32 - 44 -

5WEB INTERFACE - 45 -

5.1 CHANGING THE IP ADDRESS - 45 -

6FORMATION OF THE PCB - 47 -

6.1 TRAINING BOARD - 47 -

6.2 MEDEA MODULE VERSION 1.1 - 48 -

6.3DESCRIPTION OF WSL 14G - 49 -

6.4 5V TO 3.3V POWER SUPPLY - 50 -

6.5 LF1S022 - 50 -

7 CONCLUSION - 51 -

8 REFERENCES AND CITATIONS: - 52 -

9 SOFTWARE USED - 52 -

10 ATTACHMENTS - 53 -

10.1PHOTOS OF THE MEDEA MODULE - 53 -

10.2 PLATE DIAGRAMS AND DESIGNS - 55 -

10.2. 1SCHEMA - TRAINING BOARD - 55 -

10.2. 2SCHEMA - MEDEA MODULE - 56 -

10.2.3 SURFACE CONNECTIONS - TRAINING BOARD - 57 -

10.2.4 SURFACE CONNECTIONS - MEDEA MODULE - 58 -

- 5 -

3 Home

The goal of our long-term graduation thesis was to design and build a "hardware

Xapi server". The Xapi server is a software utility that allows the control panel to

communicate

with other computers on the Internet. The disadvantage of this method lies in the nature of

the whole solution to the problem- the Xapi server is a program and therefore depends on

the running computer. We have tried to eliminate this disadvantage by replacing the Xapi

server with our module, which will be built directly into the control panel. The basic

questions of the whole work were:

1. How to connect DsPIC with Ethernet and how to work with its protocols?

2. How to connect the DsPIC to the control panel via serial port (connector wiring,

voltage levels) ?

3. What changes in data occur during the Ethernet to Serial port transition?

The first question was solved by using the ENC28J60 integrated circuit, which

works as an Ethernet controller operating on layers 1 and 2 of the OSI model, studying the

relevant issues and building a package of programs for DsPIC capable of processing data

of higher protocols. Which was programmatically and time consuming, but possible with

complete documentation for the future.

The second question was solved by measuring the control panel connector for

communication modules and redrawing the wiring of the existing module for RS232

communication.

The third problem was significantly more complicated than the others. We

attempted to eavesdrop on the Xapi server's communication with both interfaces, but we

were unable to detect any major continuities in the output data. It was only by comparing

the data in the TCP packets when programming with the Xapi server and the data sent by

the computer when "normally" programming the control panel directly using the Omega

program that we began to discover connections. Unfortunately this was not enough, so we

were forced to ask for the original documentation for the serial communication of the

control panel from the manufacturer - 2N. With the catalogue sheets we received, we

could finally work out the first ideas of the whole solution. However, the CRC32 counting

was still an issue.

This was followed by a progression in hardware and software design. Thanks to the

training board we made the first DsPIC - ENC connection. The first programs for serial

- 6 -

communication were created. The problem with CRC32 was solved just before the creation

of the final PCB (MEDEA MODULE) thanks to the great commitment of Professor

Kubalik (more about CRC32 in the relevant chapter). Unfortunately, although the program

for communication via TCP/IP was

- 7 -

almost complete, we were forced to choose a simpler variant due to time constraints, and

therefore the control panel is programmable only via UDP.

Nevertheless, the Médea module fulfils its function - our work was therefore successful,

and in the full version of the assignment.

Using the control panel in an Ethernet network

- 8 -

4 Monitoring logs

The figure below shows the protocols through which the individual parts of the

module communicate with their environment.

Brief outline of communication protocols

The Omega program allows three ways of communication with the control panel:

over the serial line (COM), over UDP and TCP/IP. We are interested in the last two

methods implemented on the TCP/IP network.

Preview of the configuration window in the Omega program

- 9 -

4.1 Serial data transfer
A serial transmission is one in which the signal elements of the same data stream

are transmitted in series. On the other hand, in parallel transmission, a certain number of

signal elements (e.g. bits) are transmitted simultaneously.

4.1.1 Synchronous and asynchronous serial transmission

When transmitting information (serial and parallel), we must ensure that the

receiver correctly evaluates the validity of the individual tags generated by the transmitter.

Therefore, the transmitter and receiver must be s y n c h r o n i z e d i n time in some way. It

is according to the type of synchronization that we distinguish serial transmission into

synchronous and asynchronous.

Synchronous transmission is done by means of an isochronous signal, i.e. one

where the spacing of two arbitrary characteristic moments (e.g. the start and end of

individual markers) is an integral multiple of some (a priori given) unit interval.

The communication channel is therefore clocked by a common clock signal (carried

separately or contained in the data signal), which defines the validity intervals of the

individual tags. Synchronous transmission is most commonly used in bit-oriented

protocols where information is grouped into frames. In data communications, it is mainly

used for the transmission of large volumes of data.

Asynchronous (more correctly arrhythmic) transmission - the transmitter and

receiver do not have a common clock signal that would define the intervals of validity of

the markers. Instead, both sides have their own clocks, accurate enough to be considered

isochronous for several mark intervals after phase synchronization. Since the clock needs

to be synchronized periodically, this method is most often used for the transmission of

short bit sequences, characters (5,6,7 or 8 bits). The synchronization takes place before

each character, i, where the first meaning bit is always preceded by a so-called startbit,

which is represented by the opposite signal value to the rest level on line i and lasts the

same amount of time as the following bit intervals. Arrhythmic transmission is inherently

suitable, for example, for communication with a computer via a terminal.

The control panel communicates using asynchronous serial transmission!!!

- 10 -

4.1.2 Serial communication with ATEUS-Omega control panel

Serial communication is used for diagnostics of the control panel and its parts,

parameter programming, transfer of accounting data, and partly for control of the control

panel operation. Connection to the control panel is possible via a standard serial line at

speeds from 9k6 to 57k6 with autodetection by the control panel. The communication is

carried out by semi-duplex packet sending.

Hardware connection

The physical connection to the control panel is realized by means of a galvanically

separated serial port, using a 4-wire cable with Rx,Tx,GND signals. The data flow is not

hardware controlled, so the PC application must be able to receive responses from the

control panel without interruption at the selected communication speed.

Transmission parameters

The setting of the communication circuit is always 8N1 (without parity). The

transmission speed is automatically set by the control panel in the range of 9600-57600bps

when the PREFIX character is received. Higher speeds can be used on computers with

16550 (UART with FIFO).

Serial communication protocol

A new serial communication protocol is implemented in ATEUS Omega control panels.

This protocol can be used to communicate over a serial link even with the help of a

modem. It is a secure semi-duplex UDP packet transmission. The control panel is at all

times a passive participant in the communication, i.e. it never starts transmitting

spontaneously. The communication is initiated by the application, which sends a

command packet and the control panel responds after its correct reception with a reply

packet, in which the value of the NUM identifier is preserved. The control panel does not

wait for a positive acknowledgement of the packet reception by the application, if the

application does not receive a reply or the reply is invalidated by the transmission it can

send a new request. The response time of the control panel depends on the traffic load and

ranges from 5-300ms. During the response time the PBX ignores any further reception.

- 11 -

During the subsequent response transmission, any reception is considered STOP and

cancels the transmission. To speed up the treatment of communication errors

- 12 -

The channel has full duplex 1byte non-batch responses (NAK), which the PBX sends after

receiving each byte that does not fit into the protocol.

A. UDP packet structure:

Note..:

1) If the character EEh (PREFIX) occurs anywhere after the START character, it is replaced

by two EEh characters. On the receiving side, one of the characters is omitted and is of

course not counted in the CRC.

2) The CRC is provided by NUM and DATA and is sent as a big endian (LSB first).

3) The length of the DATA field depends on the size of the allocated memory in the control

panel and may increase in future versions. The 509B value is chosen for compatibility with

older versions and allows sending all previously used structures as well as new data for

software upgrades.

B. Asynchronous responses:

Asynchronous 1-byte responses are newly introduced to speed up recovery from

communication errors. Protocol violations can occur in the following cases:

Status of the control panel communication interface:

KLID expectation of receiving the 1st character (PREFIX)

RECEIVING continued reception after receiving at least 1

character REACTION time for processing an error-free

received SENDING state when the response packet is sent

- 13 -

When receiving an insufficient number of characters (e.g. when the cable is broken

in the middle of reception), the control panel remains in the RECEIVE state for an

indefinitely long time, which is not detrimental, b e c a u s e the application sends a

repeated command after its own time monitoring and the control panel is able to restart

reception at any time after receiving the PREFIX+START sequence. If the application

changes the communication rate in the meantime, the 1st packet is received as invalid and

the control panel responds by sending a NAK at the previous rate. However, the repeated

packet is already received correctly.

The response NAK = 0E0h is intended to speed up the recovery from a

communication error and to detect channel throughput. The NAK character is chosen so

that it is detectable by the application at all permissible receive rates even if the 1st

character of the packet (PREFIX) is corrupted, in which case the PBX sends the NAK at

57600 bps. Therefore, the application only tests the reception during its transmission and

can restart the transmission immediately if any byte is received.

If an error occurs while transmitting from the application, the control panel will

immediately respond to the NAK and the application should be able to restart the

transmission immediately. If the application detects a receive error, it can stop transmitting

by sending a STOP (any character) and immediately retransmit the request after flushing its

receive buffer (watch out for Windows and 16550).

If an error occurs due to a loss of characters on the line or a failure in one of the

communication directions, the application must respond by time monitoring and retrying the

request. If the retry request fails several times, the cause must be displayed and, if necessary,

channel throughput detection must be initiated,

i.e. cyclically send a correct packet (e.g. INFO) until it receives a correct packet response.

The cause is either no response from the control panel (check cable status and COM

selection) or receiving NAK characters (erroneous channel, reduce communication speed).

C. Change of communication speed:

The control panel is able to switch to the speed selected by the application on the PC during
reception

1st character of the packet (PREFIX). If this character is garbled, the PBX responds by

sending a NAK at 57600 bps. Due to the NAK option, even at a PC receive rate of 9600

bps, this character is received as 0FFh and the application can retransmit immediately. The

- 14 -

control panel detects the rate during every 1st character of the packet and if it is PREFIX

continues to receive at the selected rate and also responds at that rate. After the reply is

broadcast it always switches to 57600 bps and waits for the next packet.

- 15 -

4.1.3 Disassembling the packet

Example of captured packets during programming.

PREFIX+START DATE LENGTH

NUM+DATA CRC

Terminal log

4.2 SPI interface
SPI is a serial peripheral interface. It is used for communication between

controlling microprocessors and other integrated circuits (EEPROM, A/D converters,

displays...).

4.2.1 Distribution of devices on the serial SPI bus

Master

▪ controls communication by means of a clock signal
▪ determines which device on the bus it will communicate with using SS-Slave

Select(sometimes CS-Chip Select)

Slave

▪ transmits according to the clock signal if activated by SS/CS
Communication:

For communication, the Master sets log.0 on the SS device it wants to communicate with.

Then it starts generating a clock signal to SCLK and at that moment both devices send

their data, where MISO is always Master Output, Slave Input and MOSI is Master Input,

Slave Output. Once the data has been sent the communication can continue: The Master

continues to supply a clock signal, the SS value does not change or can be terminated: the

Master stops sending the clock signal and sets SS to log.1.

- 16 -

The length of the transmitted data is either 8bit (Byte) or 16bit (Word).

Polarity and phase of the clock signal

The relationship between the clock signal and the data is determined by two configuration

bits:CPOL and CPHA.

CPOL= 0; resting level of clock signal log.0

CPOL = 1; the resting level of the hourly sig. is

log.1 CPHA = 0; the value is read on the rising

edge CPHA = 1; the value is read on the falling

edge

- 17 -

4.3 TCP/IP
(Communication Medea module => User)

4.3.1 TCP/IP protocols

(Brief description focused on the part used in our work)

Comparison to the OSI reference model

(Assignment of logs to layers. Highlighted logs are included in our work)

7 Application
HTTP, SMTP, SNMP, FTP, Telnet, ECHO, SIP, SSH, NFS, RTSP,

XMPP, Whois, ENRP

6 Presentation XDR, ASN.1, SMB, AFP, NCP

5 Session ASAP, TLS, SSL, ISO 8327 / CCITT X.225, RPC, NetBIOS, ASP

4 Transport TCP, UDP, RTP, SCTP, SPX, ATP, IL

3 Network IP, ICMP, ARP,IGMP, IPX, OSPF, RIP, IGRP, EIGRP, RARP, X.25

2 Data Link
Ethernet, Token ring, HDLC, Frame relay, ISDN, ATM, 802.11 WiFi,

FDDI, PPP

1 Physical
10BASE-T, 100BASE-T, 1000BASE-T, SONET/SDH, G.709, T-

carrier/E-carrier, various 802.11 physical layers

- 18 -

Example of frame construction

Ethernet Frame (Frame)

Addressing: MAC address; protection code (Frame check seq.) CRC32 (four byte

cyclic redundant code); max. length 1518 bytes

The frame data content can be an ARP packet or an IP header.

ARP packet

It is usually used to find out the MAC address of the target computer, assuming

we know its IP address. The Operation field usually contains bits marking the packet

either as a MAC query (in which case the packet is broadcast, i.e. to everyone) or as a

reply with the requested MAC filled in (in which case the packet is unicast, i.e. to the

querier only)

- 19 -

+ Bits 0 - 7 8 - 15 16 - 31

0 Hardware stream type (HTYPE) Protocol type (PTYPE)

32
Hardware length

addresses (HLEN)

Protocol length

addresses (PLEN)
Operations (OPER)

64 Source Hardware address (usually MAC)

? Source protocol address (usually IP)

? Target Hardware address (usually MAC)

? Source protocol address (usually IP)

IP header

Addressing: IP address, header is variable length due to the Options field;

protective element: header checksum see: Chapter ENC28J60-Calculating the checksum

+ Bits 0-3 4-7 8-15 16-18 19-31

0 Verse
Length

Header

Type of service
Full packet length

32 Identification Flags Fragment Offset

64 Time to Live Protocol Header checksum

96 Source IP address

128 Destination IP address

160 Options

160

or

192+

Data

The data content after the IP header can be a number of different protocols, I will only

mention ICMP, TCP, UDP.

- 20 -

ICMP protocol

ICMP is a protocol for error and control messages (Echo, Destination

Unreachable, Redirect, etc.) The "Echo" message type is used by the ping program.

0 31

Message type Code Message checksum

Identifier Sequence Number

Date :::

UDP protocol

UDP provides a non-connective and unreliable message transfer service.

Addressing: ports; protection: checksum including Pseudo header.

+ Bits 0 - 15 16 - 31

0 Source Port Destination Port

32 Length Checksum

64 Data

TCP protocol

TCP provides a connectionless and unreliable message transfer service.

Addressing: ports; protection: checksum including Pseudo header.

Connection is established by synchronizing sequence numbers (Three-way

handshake)

The sequence number always contains the offset of the first data byte of this segment

with respect to the entire sequence of data to be transmitted

- 21 -

The acknowledgement number contains, if the ACK flag is set, the sequence number of the

next byte that the receiver is ready to receive.

+ Bits 0-3 4-7 8-15 16-31

0 Source Port Destination Port

32 Sequence number

64 Acknowledgment number

96
Data

Offset
Reserved Flags Window

128 Checksum Urgent Pointer

160 Options (optional)

160/192+ Data

4.3.2 Data in packets

During monitoring, it was found that UDP packets have different data content than

TCP packets. TCP packets did not contain the PREFIX, START and CRC characters (see

4.1.2), so the data must be padded before sending. Also missing is the replacement of the

EE character with two EE characters. The data must be tested, and when the EE character

appears anywhere after the START character, it is duplicated. Data

in UDP are complete and have all the requirements.

Note: The XAPI server cannot communicate over UDP.

- 22 -

4.3.3 CRC codes

CRC or Cyclic Redundancy Check is a special hashing function used to detect

errors during data transfer or storage. The CRC is calculated before an operation that is

expected to have errors. It is sent or stored along with the data. After the data is received, it

is independently recomputed from the data. If a different CRC is returned, the transfer is

declared an error. In certain cases, the error can be corrected using the CRC. The whole

process is tied to a so-called generating polynomial, which is the key to the whole process.

The generating polynomial (GP) is generally an n-bit number, where n is a power of

2 for practical purposes. Thus, in principle, we calculate CRC-16bit, CRC-32bit; CRC-

64bit or CRC-128bit, etc. .

The more "multi-bit" the CRC is, the greater the chance of detecting an error. We usually

do not invent GPs ourselves, but use already established polynomials with respect to the

type of transmission and depth of security.

You can see an example of GP here:

x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1

This case is a sample GP for CRC-32bit. It is used according to IEEE 802 for

Ethernet and not coincidentally also for our PBX.

The main operation you will need when calculating the CRC is the XOR:

As a reminder :

0 xor 1 = 1
1 xor 0 = 1
0 xor 0 = 0
1 xor 1 = 0

- 23 -

I will explain the calculation with a practical example:

We send data from point A to point B :

I choose dates: x7 + x6 + x3 + x0 => 11001001

I vote GP: x3 + x2 + x0 => 1101

POINT A

So we have the data 11001001, which we secure with polynomial 1101. The first step is

"adding" zeros to the end of the data. The number of zeros depends on the highest GP

term, in our case 3 zeros (x3). The next step is division (note that this is not ordinary

division, but the XOR mentioned above!). It is also important that after the "division" we

are not interested in the result, but in the remainder, so we will not pay attention to the

result. And now the pure calculation.

Calculation procedure:

11001001000 : 1101 = 10010010
1101
0001100

1101
00011

1101
1110
1101
001100

1101
00010

11001001000 : 1101 = 10010010, remainder = 010

- 24 -

After the remainder comes out, we substitute the zeros we added for it.

11001001000 => 11001001010

And by then, our secure data is ready to be sent.

POINT B

On the receiving side, the data is divided by the same GP and when the remainder comes

out zero, the data arrives at point B intact.

11001001010 : 1101 = 10010100
1101
0001100

1101
0001101

1101
0000

If the remainder does not come out zero, we already know something is wrong. We have

several options. One is to send a request to repeat the last message, or just to let the

sending side know that the data did not arrive correctly. On a bad CRC, the control panel

responds with a NAK response for the bad CRC.

- 25 -

5 ENC28J60 integrated circuit
This section is a translation of a selection of parts from the manufacturer's data sheets.

5.1 Basic parameters ENC28J60

- The ENC28J60 (hereafter abbreviated as ENC) is an integrated circuit

compliant with IEEE 802.3 and Ethernet industry standards operating at layers 1 and

2 of the OSI model. It is designed for 10BASE-T technology, which is a standard

that uses Category 3 UTP and STP (Twisted Pair) cabling and RJ45 connectors

designed for a star network topology w h o s e basic network elements are the Hub

and Switch. Maximum segment length 100m (328feet). The maximum data rate is 10

Mbps. Max. impedance:100Ω.

- ENC has ...

o one IEEE 802.3 port with automatic polarity detection and correction

o SPI interface for communication with the controlling micro-processor.

o built-in cyclic 8KB memory (Buffer) programmably divided into Transmit

and Recieve part.

o implemented a polynomial and a mechanism to count 16bit checksum for IP

protocols.

- Supports both types of media access; Full-Duplex and Semi-Duplex. The

access type must be set manually. ENC cannot independently detect which type it i s

on a given connection. With the Semi-Duplex type enabled, the ENC can be set to

automatically re-transmit the frame itself when a collision occurs, until it fails to

send or until the number of collisions exceeds a critical limit.

-

- ENC is also capable of adding Padding and CRC32 to the frame itself, which

it automatically generates. In addition, it includes a number of programmable receive

filters (Unicast, Multicast, Broadcast, CRC mesh, Huge Frame, Pattermatch, Magic

Packet and Hash Table Filter (CRC on the destination MAC address of the incoming

packet, criteria check)

- Electrical parameters:

o Power: 3.1 - 3.6 [V]

- 26 -

o 5V TTL inputs, 3.3V logic outputs

- 27 -

5.1.1 ENC28J60 memory:

All ENC memory is implemented as static RAM. It is divided into three types.

Control registers(Control reg:

-registers used to configure and detect ENC status.

-are divided into 4 pages

-they are accessed directly via the SPI interface

-Write/Read Control reg commands.

Ethernet Buffer 8KB

-is a transmit and receive memory, with individual access

-memory allocation is programmable by four control registers

-write read via SPI directly(Write/Read Buffer mem.)

-change automatically incrementing pointers(write/read) via Control reg.

PHY registers

-registers used for configuration, health check, Physical layer health check

-access by writing via Control Registers

- 28 -

Division of Control Registers into pages

- 29 -

Summary of all Control Registers, their individual bits and values after reset

- 30 -

- 31 -

5.1.2 Access to ENC28J60 SPI interface:

The ENC supports 8-bit SPI 0.0 slave mode with a clock at logic zero in the idle state

Sending a byte over the SPI is initiated by setting logic 0 on the ENC CS pin (DsPIC

PortD8), which puts the ENC side in the command pending state. Now the sending of

the command byte/address/data according to the command table can follow. The clock

on the SPI is activated and the byte is sent and received at the same time. When the

transmit/receive is complete, the CS pin returns to the logic 1-down state.

SPI commands:

The function of the ENC28J60 is completely dependent on the instructions sent from

the control device (DsPIC) via the SPI interface. Instructions are sent in the form of

single or multiple byte instructions used to access the Control Memory and Ethernet

Buffer. The instruction consists of at least a 3-bit opcode followed by a 5-bit argument

containing either a register address or a data constant.

Write and BitSet instructions are followed by one or more bytes of data.

Table of instructions:

- 32 -

5.1.3 ENC2860 wiring:

Oscillator:

ENC designed at 25 MHz. This can be accomplished by e i t h e r connecting the crystal

to pins OSC1 and OSC2, or by using an external clock source and connecting it to OSC1.

After the Power-On and Power-down restart, wait until the oscillator stabilizes. When

this happens the CLKRDY bit in ESTAT (Control Register in ENC) is set to log1.

External connections:

The ENC must be wired according to the datasheets to work properly:

The physical layer module needs a 2.32KΩ resistor to ground on the RBIAS pin. This

resistor affects the output signal aplitude on the TPOUT+/- pins. It is recommended that

this be a surface mount type and connected, for interference reasons, with the shortest

possible connection to ground.

The ENC is powered by 3.3V, whereas the DsPIC used in this project as a control

controller is powered by 5V. The voltage difference needs to be compensated. The ENC

inputs(CS, SCK, SI, RESET) are 5V tolerant, but the outputs(SO, INT, CLKOUT) are not

at TTL levels, although the DsPIC would probably recognize the levels correctly(3.3 is still

within the tolerance) a level lift should be used to be sure, which can be implemented e.g.

by using a CMOS logic AND circuit (74HCT08), one input of which is connected to log1.

see Figure 2-5.

- 33 -

It is also possible to connect 2 LEDs to the ENC, which can be set to indicate Link(cable

connected to another device) and Recieve(incoming packet) status. By connecting LED B,

it is possible to set up Full/Half duplex access to the media in hardware. See Figure 2-7

5.1.4 Checksum calculation in ENC28J60:

ENC has a checksum calculation function. Two pointers (divided into the following. and

top. byte, EDMAST-pointer to the first byte of the checksum data, EDMAND-pointer to the

last byte included in the checksum) define the area in the cyclic Ethernet Buffer for which

the ENC should calculate the checksum. Then we activate the start bits of the

operation(ECON1.CSUMEN;ECON1.DMAST). When the calculation is finished,

EIR.DMAIF is set, which can generate an interrupt. The result is in the EDMACS control

registers (H and L upper and lower byte).

The checksum works with the marked contents of the Ethernet Buffer as individual 16-bit

numbers (if it is an odd number, the padding 00h is added to complete the 16 bits).

These 16-bit numbers are added (the Carry bit for each individual sum is

automatically added to the given result) and the complement of the total result to the

max. value(0xFFFFh) is the resulting 16-bit checksum.

- 34 -

Example:

values in memory for final sum:{89h, ABh, CDh} sum:

89ABh + CD00h = 156ABh

carry bit shift: 56ABh + 0001h = 56ACh

complement: FFFFh - 56ACh = A953h

checksum is therefore A953h

This method is used for IP, TCP, UDP, ICMP, etc.

Page settings (SetPage subroutine)

The current page number lists the two lowest bits(BSEL0,1) of the ECON1 control

register.

The page change must be done using BitSet(not write2control) instructions, because the

page change must not affect other bits in the register!

5.1.5 Write to PHY register (Write2Physical subroutine)

The PHY registers cannot be written to directly by an SPI instruction. This must be done

by writing to special Control registers. The following is the writing procedure:

▪ entry of the PHY register address in the MIREGADR Control Register

▪ writing the lower 8 bits of data into the Control Reg. MIWRL

▪ writing the upper 8 bits of data into the Control Reg. MIWRH

▪ wait until the MISTAT.BUSY bit drops back to 0, or wait exactly 10.24us, or

continue, but do not write or read from PHY memory for a given period of time.

- 35 -

5.2 Device initialization
(see 6.0 INITIALIZATION)

Before the device can function properly, it must first be set up. This is done by writing a

series of values to some Control Registers. If these registers are divided into upper and

lower 8 bits, it is always necessary to write the value to the lower 8 bits first. It is

recommended to follow the given procedure.

Splitting the Ethernet Buffer into receiving and transmitting parts

This is done by writing down the starting and ending addresses of the receiving part. The

buffer has 8K. The highest possible address is 1FFFh. If we want to split the memory

exactly in half, we set the Receive(Recieve) part by saving

0FFEh to ERXST(16bit reg. pointing to the beginning of the received part, must

be an even address) 1FFFh to ERXND(16bit reg. pointing to the end of the

received part)

All other memory is considered the transmitting part.

ERXRDPT must be set to the same value as ERXST

Receive Filters settings (see Recieve Filters)

Receive filters are set by the ERXFCON register. By a series of enable bits. For most

applications it makes sense to consider setting UCEN(Unicast), CRCEN(CRC ok),

BCEN(Broadcast), ANDOR(filter pass logic). For normal applications, it is advisable to

leave the default value.(UCEN,CRCEN,BCEN=1; rest 0)

• UCEN - passes frames with a MAC address matching the address stored in the

MAADR1-6 Control Registers. These are set later.

• CRCEN - passes frames for which it does not detect an error using CRC32, the

ANDOR bit does not apply

• BCEN - passes all broadcast frames(MAC= ff:ff:ff : ff:ff:ff). Such frames are used e.g.

in ARP protocol, so they are necessary for parsing and response.

- 36 -

• ANDOR (see Figure 8-1 Recieve Filtering using OR logic)

o Log 1-frame must pass all filters

o Log 0- frame must pass at least one filter

Whatever the ANDOR value is, the packet must also pass the CRCEN filter if it is enabled.

A packet that does not pass the defined filters will be rejected. The user will not be able

to register the rejected frame in any way.

Writing 00h to ERXCON switches the device to promiscuous mode (all incoming packets

will be accepted)

Waiting for Oscillator Start-up Timer (see Wainting For OST)

It is necessary to wait for the oscillator to stabilize after Power-on Reset before

proceeding with initialization. The stabilization indicator is the ESTAT.CLKRDY bit.

Once it is set to 1 we can proceed. (MAC and PHY registers can now be set)

MAC initialization

What follows is a sequence of settings that can only be understood after a deeper

understanding of the issue. I prefer to follow the original datasheet - its recommended

settings.

In some registers it is necessary to write different values for the Full and Half/Full-

Duplex type of multiple media access. The settings shown will be independent of the

external wiring of LED B in both cases, which can be set by wiring the connection type

in a hardware way. (See External connections; LED polarity)

In all cases, the following entries refer to the registers on page 2.

Full Duplex

0Dh to MACCON1

B3h to MACCON3

40h to MACCON4

EEh to MAMFLL

05h to MAMFLH

15h to MABBIPG

12h to MAIPGL

0100h to PHY.PHCON1

Half Duplex

01h to MACCON1

B2h to MACCON3

40h to MACCON4

EEh to MAMFLL

05h to MAMFLH

12h to MABBIPG

12h to MAIPGL

0C to MAIPGH

0000h to PHY.PHCON1

0100h to PHY.PHCON2

- 37 -

MAC address settings:

For the Unicast filter to work properly, you must store your own MAC address in the ENC,

it is not supplied with the IO. The unique MAC address can be taken from old or broken

network cards, for example, and which can then be discarded to avoid problems

with collisions of two identical MACs in the network. The MAC address is written to the

cont. reg. on page 3 of MAADR1-6, with the first byte(LSB) written to MAADR6.

Interruption when receiving packets:

ENC can generate an interrupt on every incoming packet that passes through the Filters if

we set the EIE.PKTIE and EIE.INTIE enable bits or if we want it to generate an interrupt

on every packet dropped due to Buffer overflow, we need to reset EIR.RXERIF and set

the EIE.RXERIE and EIE.INTIE bits.

Enabling packet reception:

After the RXEN bit is set, the Duplex mode, the pointer indicating the start and end of the

receive buffer should not be changed and to prevent receiving unsuitable packets it is

recommended to temporarily reset RXEN before changing the ERXFCON and MAC

address filters. Once reception is enabled, all packets matching the filters will be written

to the receive buffer memory. Those rejected will be discarded and the user will not be

able to detect this.

To allow admission

It is necessary to set ECON1, RXEN

- 38 -

5.3 Sending a packet

If ENC is initialized correctly it automatically generates Preamble, Start-of-frame,

padding(60B or 64B) and CRC32. This setting can also be changed just for a single packet

by using the Per-Packet-Control byte(see 7.1 datasheet). The following is the

recommended catalog procedure for sending in a packet:

1. Set the ETXST pointer to the even unused (Non-receive) part of the memory,

where the packet will start. If the program does not need to spit out a lot of data at

once and cannot wait for packets to be sent, it is sufficient to set this pointer to the

same address each time.

2. Write to the buffer below the value in ETXST, Per-Packet-Control byte (00h for

most applications)

3. Write DATA (mac destination address, mac source address, type/length, frame data)

4. Set the ETXND pointer to the last byte of data included in the packet

5. Reset EIR.TXIF bit, set EIE.INTIE to enable interrupts

6. Send packet by setting ECON1.TXRTS

The packet will be sent as soon as possible - as soon as any DMA operation (e.g.

Checksum calculation) is finished. Similarly, the DMA operation would wait if a packet is

being transmitted.

Once the packet is sent or if its transmission is cancelled TXRTS will be reset and

the seven byte Status Vector (see chapter) will be written after the transmitted packet.

If ESTAT.TXARB is in 1, the packet was not sent correctly. ESTAT.LATECOL determines

that the collision occurred after the 64 bytes were transmitted. Half-duplex issues, but this

problem should not be too common and in most cases does not need to be treated)

- 39 -

5.4 Receiving packets

Once receive is enabled in initialization, all packets matching the filters will be written to

the receive buffer memory. Rejected ones will be deleted and the user will not be able to

detect this in any way.

Once a packet is completely received and written to the buffer, the EPKCNT register

increments, EIR.PKTIF (indicating that there are one or more unprocessed packets in

memory) is set to 1 and an interrupt will be raised if enabled, and the Hardware Write

Pointer (pointing to the address where the next packet will be written; it is software

unwritable) automatically increments by 1. EIR.PKTIF resets the hardware after the packet

space is freed, see the chapter Freeing space in the receive memory.

The received packet (see Figure 7-3) written in the buffer has 6 information bytes preassigned.

1. The first two specify the so-called Next Packet Pointer (i.e. the address of the first

byte of the next packet) The Next Packet Pointer value is very important for the

running of the whole receiving program - I recommend to back it up to the control

processor (DsPIC).

- 40 -

2. The following is a 4-byte Status vector (see chapter)

3. After the 6 bits of information, the frame data (destination mac. ad., source mac.

ad., type/length, data, padding and CRC32 of the frame) are in memory.

A padding bit can be added at the end so that the first address of the next packet(next

packet pointer) is even.

5.4.1 Freeing up space in the receiving memory

Releasing cyclic memory(buffer)

After the user processes a packet (or a part of it) and wants to free the space filled

with processed data, he must increase the value of the Recieve Buffer Read Pointer

(ERXRDPT). ENC will write cyclically to the Buffer if the value of the Hardware Write

Pointer is different from the value of ERXRDPT, so all data below and at the address in the

buffer pointed to by the ERXRDPT pointer are protected against being overwritten by new

data. When ENC attempts to overwrite an ERXRDPT protected cell, the write is aborted,

the value in the cell remains, and the interrupt is invoked if enabled (EIR.RXERIF is set,

EIE.RXERIE is enabled for interrupts).

All incoming packets will be dropped until memory is freed.

- 41 -

The change of the pointer will be performed after writing first the lower and then

the upper byte.If the user processes all data in a certain packet and wants to free its place,

he must increase the value of ERXRDPT so that it points for the processed packet (note

that the memory is cyclic, it is best to set the value from the Next Packet Pointer), then it

is necessary to set the bit ECON2.PKTDEC. When the user does this the value in

EPKTCNT (the register containing the value of unprocessed packets) decrements by 1. If

EPKTCNT reaches zero the hardware resets the EIR.PKIF bit (indicating that there is one

or more unprocessed packets in memory).

Determining the amount of free space in cyclic memory

By subtracting the values of the ERXRDPT and ERXWRPT(Hardware Write Pointer)

registers, the user gets the number of free bytes ready to write new packets.

- 42 -

6 Program in dsPIC30F3013

This section summarizes the most important features of the program used in the Médea project.

6.1 Basic sub-programmes:
In order to simplify, speed up and make the program clearer, we have created subroutines

for the most frequently used groups of instructions. Some of them have input parameters

and some also return a value. For input and return output values we use wregisters, of

which there are a total of 15 (0-14) usable in our DsPIC. For input/output values we mostly

use W registers 1-3, the rest are for working calculations.

Subroutines SPISendW1, SPISendW2:

They are the lowest subroutines in the hierarchy designed for direct communication

with the SPI interface. They send the lower 8 bits from W1 or W2 and receive the 8 bits

sent from the target device (ENC2860).

Subroutines directly using SPISend, setting the CS pin

Write2Control subroutine:

This subroutine is designed to store the value in W2 into the Control Register in ENC at

the address stored in W1 on the current page. It sends a complete write control register

command. It can be preceded by a prodprog. SetPage to set the page.

Subroutine ReadControl:

It is intended to be read from the Control Register. It is very similar to Write2Control. It

has a variant for reading Control Regs of MAC type

BitSet/Clear subroutine

Set the selected value by masking it with the value in W2 of the Control Register at the

address in W1.

- 43 -

Write2Buffer/ReadBuffer subroutines

They are designed for reading and writing from the Ethernet Buffer. They send complete

write/read buffer mem commands. They send/return values in W1. It can be traversed by a

SetWrite/ReadPointer subroutine setting the pointer to the selected value.

SoftReset subroutine

This subroutine invokes a "soft" reset of ENC by sending a command over SPI.

Sub-programmes directly using any of the above sub-programmes

Subroutines SetPage, Write2Physical, SetWrite/ReadPointer, etc...

6.2 Start of the programme
The programme starts in 3 phases:

• DsPIC processor settings (Ports, SPI, Uart, ..)

• Reset ENC28J60 (Hardware reset, Half/Full Duplex switch status detection)

• Initializing ENC28J60 (Reading IP from EEPROM, Initializing, Starting

Ethernet interface)

This puts the Médea module in a state of expectation, it is a passive device (it never starts

transmitting first). The program in the DsPIC is put into a cycle expecting a change, either

pressing one of the buttons or receiving a packet.

6.3 Running the program
After the start, the program is put into the state of expectation (it is a passive device) of

either an incoming packet change of state on the Half/Full Duplex jumper, change of state

of the Reset IP button.

• When a packet arrives, the program jumps to the subroutine and processes the packet,

or sends an appropriate response. (more in chapter Identifying the incoming packet)

• When a state change is detected on the Half/Full Duplex jumper the program resets.

Some incoming packets that may be currently being received by the ENC28J60 circuit

may be lost, so it is necessary to perform the duplex change only when the device is in an

idle state, preferably when the device is turned off completely.

- 44 -

• Pressing the Reset IP button causes the basic IP address setting (192.168.1.5) to be

loaded.If some packets are still to be received on the original IP, perform the Reset IP

after they have been processed.

6.4 Half/Full Duplex jumper
ENC28J60 does not have autonegotiation function (automatic setting of duplex operation

using synchronization pulses) and therefore the duplex operation can be set manually using

a jumper and we have two options:

• Half-Duplex - the device is connected to a HUB or a router that does not support

Full Duplex

▪ jumper is closed
• Full-Duplex - the device is connected to a Switch or a router supporting Full

Duplex

▪ jumper not connected
Perform duplex change only when the device is at rest.

6.5 Reset IP
Normally, the last set IP address is read from the EEPROM every time the program is

started and changed using the web interface (see the Web Interface chapter).However, if

for some reason the user does not know this address and therefore does not have access to

the web page, the user must perform a Reset IP, which sets the address back to the base

192.168.10.111 and then can change it to the desired value.

- 45 -

0.bit of the 1st byte of
the Destination Mac
address

Broadcast/Unicast frame
with verified CRC

=0 Unicast

=01h ICMP
packet

=06h TCP
packet

=11h UDP
packet

Port 1234?
If so, it is a packet sent by
the OMEGA program.
Details
in the chapters UDP, Data for
Omega.

Echo request?
If yes, check the checksum and
send the response

IP Protocol?
If so, verify that it is our IP,
process the data, check
Checksum and use the
Protocol field to make
further decisions

ARP packet?
If so, check to see if it's asking for our
IP address.
Reply (tell him our Mac)

Further processing of the request,
changing the IP if necessary,
sending the response (website)
Detailed in the chapters TCP, Web
Interface

Port 80?
If yes, create a connection
(Tree-way-hand shake)
Read data:

6.6 Incoming packet identification
(pass through the layers of the OSI reference model)

Once a packet is received the Médea module starts processing it. First, it needs to

determine w h a t k i n d of packet it is - it starts the sorting process, the data reading

process, which either discards the packet as unwanted/unsupported or identifies it as a

request for a specific service and then processes it and sends a response.

=1 Broadcast frame

(Multicast disabled)

="GET"; HTML request

- 46 -

6.7 Interruption

We use UART interrupts for both transmit and receive, this will allow for program

acceleration.

6.7.1 UART initialization

The initialization of the UART is performed by the _UartInit subroutine. Thus call _UartInit.

▪ U1BRG entry. Speed 57600, assuming eight-phase hinge.

▪ Writing to U1MODE number 0x8400, i.e. 8 data bits, parity zero, 1 stop bit

▪ UART activation => setting the UTXEN bit to 1 in the U1STA register.

6.7.2 Interrupt .global reception

Data is stored in memory in the .global receive interrupt

▪ For UDP: Received and stored in memory

▪ For TCP: Cut EE 23 header, cut CRC

6.7.3 Interrupting .global transmissions

Transmission of data from the memory to the control panel is done in interruption .global
transmission

▪ For UDP: Forwarding the UDP packet to the PBX

▪ For TCP: Adding header, doubling EE after START = 23, counting CRC

- 47 -

6.7.4 CRC32 counting

For TCP packets it is necessary to calculate the CRC. The subroutine for CRC is

called by the command call CRC32. The procedure for using the subroutine is as

follows:

▪ Insert the start address of the data into the w13 register and the length of the data into the
data_length cell

▪ Read data from memory, put it into W0 and call the subroutine call crc32_update

▪ After the last byte of data the program continues to crc_end and then we get

the result in cells crc32_H and crc32_L

Note: Two programs were created, one calculates the CRC according to the method

described in 4.3.3, but this method did not work when implemented on data from the

control panel. Therefore, a second program was created by rewriting the CRC32

program from the C language. The program was created by Professor Tomáš Kubalík,

the leader of our work. Unfortunately, we did not find out how and why the first

method does not work.

- 48 -

7 Web interface

7.1 Change IP address
Changing the IP address is done via the web

interface - using any web browser. First, a

connection is made between the browser and

The Médea module creates a TCP/IP connection on port 80 (http protocol). When the Médea

module receives a request for a specific action using the parameters of the http GET

command, it sends the appropriate html response and possibly changes the IP address in the

DsPIC-EEPROM.

Principle:

• TCP segment data contains ASCII text GET / http

▪ The medea module sends back a standard web page, using the saved ascii
form to fill in the IP address change field

• The TCP segment data contains the ASCII text GET /?IP= followed by the correct

the specified IP in ASCII form

▪ the IP image is loaded ascii
▪ converts to four hexadecimal numbers
▪ both variants of IP expression are stored in EEPROM
▪ the response "IP address has been successfully saved" is sent
▪ the IP address in RAM is changed
▪ the program continues to respond only to the new IP address

• The TCP segment data contains the ASCII text GET /?IP= followed by the incorrect

the specified IP in ASCII form

▪ The Medea module sends a standard web page with the warning "Incorrect IP!"

- 49 -

Load the next character and if it is a dot(2Eh) continue. Otherwise jump

Shift the exponent registers and save to the lowest place(c=place of units)

Subtract 30h to get the net number

Compare if it is in the range 30h-39h (ASCII digits 0-9)

Convert exponents to hex. hex=a*100 + b*10 + c; save; additional digits IP

Read character (1 byte)

ASCII IP -> HEX IP conversion

Normally, the IP address is written in decimal form, with each digit separated by a period.

Omitting zeros makes the length unfixed. This is the case even when the IP address is

expressed in ASCII characters. In this form, it is easy for humans to read and remember.

However, in the packets we parse and send, the IP address is expressed in four hexadecimal

digits, not separated by anything.

- 50 -

8 Formation of the PCB

In total, two albums were made. The first one was purely for training purposes =>

Training board. And the second one is ready to be used in the control room.

8.1 Training board

Placement of components on the board in 3D

On this board we verified the SPI communication between PIC and ENC, UART

and everything needed to implement our board in TCP/IP networks. There are breakout

bars in place for the usual "where could be the error". The breakout bar is also used for

programming. Under the PIC (left) are the pins for connecting the Thomas converter, under

the ENC are the pins for connecting the transformer and the RJ-45 connector. The power

supply pins here are solved by terminal blocks, one for 5V and the other for 3.3V (ENC

required), the grounds are connected. The button resets the ENC. 25 MHz (ENC) and

7.3728 MHz (dsPIC) crystals are used. In addition, a 74HCT08 CMOS gate is used to

convert levels between the PIC and ENC.

- 51 -

8.2 Medea module version 1.1
The second product we called Medea module. The product is already ready for use

in the control panel, it is equipped with mounting holes for fixing. The module is powered

by the control panel, from which 5V comes out, the 3.3V power supply is solved by a

Zener diode (wiring below). The strip below the PIC is for programming. The board has

two buttons, the button located at the top is RESET (resets the PIC - leads to the MCLR)

and the button located below it is RESET IP (sets the

default IP address of the module 192.168.10.111). For better orientation during information

transfer there are 3 LEDs, two in a column above each other next to the RJ-45 connector

and one above the buttons. The module communicates with the control panel via a 14-pin

WSL 14G connector (top-most description below). The last important element is the

jumper (next to WSL 14G), it sets half-duplex and full-duplex.

Jumper wiring: HALF = JUMPER CLOSED, FULL = WITHOUT JUMPER

Medea module version 1.1

- 52 -

There was an error in the implementation of the board. The RX and TX pins of the

14-pin connector were swapped. The error is corrected by a reducer included in the module.

See below for a description of the connector.

Immediately after the bug was discovered, another board design was created, version 1.2, where
everything is fixed.

8.3 Description of WSL 14G
The module is connected to the control panel by a 14-core cable. The picture below

shows the connector on our module from the components view.

Preview of the WSL 14G mounted on the board from a
component perspective

PIN DESCRIPTION

1 GND

2 +5V

5 RX dsPIC, RX control panel

7 TX dsPIC, TX control panel

11 GND

Note: :

1) Pin 1, i.e. GND, is connected to pin 11.

2) In the table you can see that there was no crossing of paths as there should

have been (i.e. TX dsPIC, RX PBX). The reduction solves this by swapping

wires. I.e. RX to TX.

- 53 -

8.4 5V to 3.3V power supply

+5V

+3,3V

8.5 LF1S022

When selecting the transformer and connector, we opted for integrity and chose the

LF1S022, a decoupling signal transformer for Ethernet 10Base-T in an RJ-45 connector.

Internal wiring diagram

15Ω 15Ω

- 54 -

9 Conclusion

The result of our long-term graduation work is a fully functional hardware module

for the Ateus Omega control panel. By constructing this product, we have honed a number

of skills including: programming in Assembler, circuit board fabrication, monitoring and

applying packet communication protocols in practice, and teamwork. We learned how to

solve problems related to product implementation. A possible future improvement could be

to reduce the power dissipation of the voltage regulator. Finally, we would like to thank

Professor Ing. T. Kubalík for his support and help

at a time when the situation seemed unsolvable.

- 55 -

10 References and citations:

Literature:

Šmrha, P. - Rudolf, V.: Internetworking using TCP/IP edition České Budějovice, Kopp
1997, 126 p.

Catalogue sheets-pdf:

Circuits: DSP30F3013, ENC28J60Microchip

LF1S022

Serial communication with Ateus Omega control panel 2N

Internet links:

http://cs.wikipedia.org/wiki/TCP/IP TCP/IP protocols

http://www.cs.vsb.cz/grygarek/LAN/sem/sercomm.html serial transmission

http://cs.wikipedia.org/wiki/Cyklick%C3%BD_redundantn%C3%ADsou%C4%8Det CRC

11 Software used

MPLAB IDE v. 7.42

ASIX UP v. 2.7

EAGLE 4.16 Professional

EAGLE 3D ulp module for EAGLE 4.16

Professional POV-Ray v. 3.6

Visual Basic 6

Wireshark

Terminal

IrfanView

microsoft software package => Word, Visio, PowerPoint

http://cs.wikipedia.org/wiki/TCP/IP
http://www.cs.vsb.cz/grygarek/LAN/sem/sercomm.html
http://www.cs.vsb.cz/grygarek/LAN/sem/sercomm.html
http://cs.wikipedia.org/wiki/Cyklick%C3%BD_redundantn%C3%ADsou%C4%8Det

- 56 -

12 Attachments

12.1 Photos of MEDEA MODULE

Reduction to MEDEA MODULE

- 57 -

Diode column

JUMPER
half x full duplex

LED control
(PIC)

Reset MCLR (top)
Reset IP (bottom)

Sockets for programming
Power supply 3,3V

- 58 -

12.2 Plate diagrams and designs
12.2.1 SCHEME - TRAINING BOARD

- 59 -

12.2.2 DIAGRAM - MEDEA MODULE

- 60 -

12.2.3 PRINTED CIRCUIT BOARDS - TRAINING BOARD

Preview of the PCB on the BOTTOM Training Board layer

Placement of components on the Training Board

- 61 -

12.2.4 PRINTED CIRCUIT BOARDS - MEDEA MODULE

PCB preview of the TOP Medea module layer (from the components view)

Printed circuit board view of the BOTTOM Medea module layer (from the components view)

- 62 -

Preview of the PCB on TOP and BOTTOM layer at the same time (from the view of the semi-particles)

Component layout on the MEDEA MODUL board

Preview of PCB on BOTTOM layer and TOP Medea module

