Czech Technical University in Prague, Faculty of Nuclear and Physical Engineering

Department of Physics Area: Nuclear Engineering Fous Experimental nuclear physics

Spectra in $p^{\check{\prime}} \mathrm{r}^{\text {rı̌̌n'e }}$ momentum and correlations from the blast wave model with resonances Transverse momentum spectra and correlations in the blast wave model with resonances

BACHELOR'S THESIS

> Elaborated: V'aclav Ko`sa`r
> Head of the Dr. Boris Tom'a`sik, Department of Physics Year: 2010

Before the wedding, instead of this pageenter the assignment with the signature of the the only two-sided letter in your dean (will be !!!!

Prohl'a`sen'ı

I dethat I have prepared my bachelor thesis independently and I have used only the materials (literature, projects, software, etc.) listed in the attached list.

I have no obvious reason against the use of this complete work within the meaning of Act No121/2000 Coll., on Cqjigt on Rights Related to the Copyright Law and on Amendments to Certain Acts (the Copyright Act).

In Prague on \qquad

Subsection

I would like to thank Dr. Boris Tom'a'sik for his excellent guidance of my Bachelor's ťsifor his patience
and for all the time spent explaining the issues, evaluating our work and upI point out the mistakes and errors I have made.

V'aclav
Ko"sarr

The name of the work:
Spectra in $p^{`} r^{\prime}$ řcn'e momentum and correlations from the blast wave model with resonances

Author: \quad V'aclav $\mathrm{Ko}^{\text {` }} \mathrm{sa}^{\text {` } \mathrm{r}}$
Branch: Nuclear engineering
Type of action: Bakal'a ${ }^{\text {rska }}$ pr'ace
Head of the study: Dr. Boris Tonáa Department of Physics
Department of Physics, Faculty of Nuclear and Physical Figaig Czech Technical University in Prague
Consultant:

Abstract: $\operatorname{Pr}^{\prime}$ ace is a re'ser'e of the theory concerning the behaviour of states of matter with high energy density, which is produced by the collision of three low ions at energies higher than GeV per nucleon. The book contains basic information on the extreme state of matter called the quark-gluon plasma, an introduction to quantum statistical mechanics and an introduction to the theory of the boostinvariant expanding fireball of hadronic matter.
The particular object of interest is the Blastwave model with included resonances, whose basic assumptions are the underlying boost-invariant expansion, the overexpansion and the existence of a specific superplane in which the hadronic matter is released from the fireball in a jump.
In the last p art of the paper the author fits the two most important parameters of the model
Blastwave by by editedly program DRAGON [B. Tomasik, Comp.Phys.Commun. 180 (2009) 1642-1653] on the spectra in the for ward momentum obtained from the STAR experiment.
$K l$ ' $1 c$'s words: ultrarelativistic cores, sub-black boost-invariant expanding fi- reball, Blastwave model, spectra in the forward momentum, DRAGON

Title:

Transverse momentum spectra and correlations in the blast wave model with resonances

Author: V'aclav Ko`sa`r

Abstract: This thesis provides a review about the basics of theories of properties of matter with high energy density, which originates in heavy ion high energy collisions ($\mathrm{GeV} /$ nucleus). Basic information about the extreme state of matter called quark- gluon plasma, introduction to quantum statistical mechanics and introduction to theory of longitudinally boost-invariantly expanding fireball of hot matter are men- tioned.
Particular intention is given to the blast-wave model with resonances, whose basic assumptions are longitudinally boost-invariant expansion, transverse expansion, and the existence of a particular hypersurface in space-time, on which hadronic matter abruptly decouples from fireball.
In the final part two most important parameters of the blast-wave model are extracted from fits to the transverse momentum spectra obtained from STAR experiment, using a modification of the program DRAGON [B. Tomasik, Comp.Phys.Commun. 180 (2009) 1642-1653].

Key words: ultrarelativistic nuclear collisions, logitudinally boost-invariant expanding fireball, Blastwave model, transverse momentum spectra, DRAGON

Table of Contents

Introduction 9
1 A contemporary view of the structure of matter 10
1.1 Element'arn'1 "c'astice 10
1.2 Standard model 10
1.3 Quark-gluon plasma 11
1.4 QGP and Velky' tresk 12
2 Quantum statistical mechanics 13
2.1 Quantum statistical mechanics 13
2.2 The truest and most similar division and the Grand Canonical set. 13
2.2.1 Bosons and fermions 15
2.2.2 Density of states 16
2.2.3 Fermi and Bose "c' astic and anti ${ }^{\text {c }}$ ' astic gases of one type 17
2.2.4 Photon gas. 18
2.2.5 Bag model 19
3 Sub-black boost-invariant expanding fireball 21
3.1 Notes 21
3.2 Coordinates 21
3.2.1 Spatiotemporal coordinates 21
3.2.2 Co-ordinates of the " c 'astice 22
3.3 Hydrodynamic description of the relativistic relation 23
3.3.1 Differences in the axis 24
3.4 Bjorken's boost invariant expansion 24
3.5 Differences in momentum during freezing 24
3.6 Symmetrization of the production function, parameterization 26
3.6.1 N 'astin derivation of the symmetrization effect 26
3.6.2 Parameterization. 29
3.7 Blastwave model 30
3.7.1 Areas of homogeneity 32
3.7.2 Slope of the spectrum of the forward momentum, freezing temperature 32
4 Simulation in DRAGON 34
4.1 The DRAGON program and its parameters 34
4.2 Programme editing 35
4.3 Results6alculations 36
4.3.1 Experimental data, data normalization 36
4.3.2 Calculate χ^{2} to fit the parameters $T_{f o}$ and $\eta_{f \text {. }}$ 36
$Z^{\prime} \mathbf{a v}^{\text {ºr }} \mathrm{er}$ 42
List of sources used 44
P`r'ilohy 45
A. 1 Script for MATLAB for numerical integration of the relation for the spectrum of continuously produced particles 46
A. 2 Comparison of spectra numerically calculated for the directly produced ats from the experiment and from DRAGON 47
A. 3 Tables of results $\chi^{2}\left(E, \eta_{f}, T\right)_{f o}$ 49

Introduction

The nucleus of the third ion behaves roughly like a drop of liquid with p^{\wedge} ribli` $\mathrm{zn}^{\vee} \mathrm{e}$ homogeneous goose- total, in the rest frame $\mathrm{p}^{\text {̌riblǐzňe spherically symmetrically }}$ distributed around the bedy We observe high-energy collisions (from 1 GeV per nucleon) of two three ios even at the more central entrance of the collision, there is a lower expansion due to the quan-
these phenomena - the nuclei are the "sight". In the area of the pathway in the case of the more and more
the nuclear liquid is strongly undergrown due to the interaction of extreme conditions - the nuclear liquid is strongly undergrown
If the energy density reaches the necessary values, the formation of a hypo- tetic quark-gluon plasma can occur. The quark phenomena cause the transfer of part of the energy of this very dense drop of nuclear matter to the formation of a particleantiparticle pair, and the considerable pressure causes their overexpansion.

Thus, a fireball of many ${ }^{\prime} c^{\prime}$ astic $^{`}{ }^{c}{ }^{\prime}$ 'aste ${ }^{\vee} \mathrm{s}$ is created, expanding more and more substantially into space. As the fireball expands, its energy density decreases, and this causes two significant reverse transitions. First, from a quark-gluon plasma to a hadronic
Gas. This transition is called hadronization. Hadron gas is still sufficiently dense, strongly interacting, so that it can be considered as approximately thermalized.

Next, there is a transition from dense hadronic gas to free lantos This transition is called freezing. As the fireball continues to expand, the energy density continues to decrease and the unstable particles deay We then detect only the more stable particles and try to reconstruct from them the physics of the original nuclear core - the equations of state for the critical states of matter (i.e. The nature of the collective behaviour of dense nuclear matter), the laws of elementary interactions at high energies, the behaviour of a highly excited vacuum.

The question is how to choose a model to describe the high-energy interaction of two three ions and how to choose its parameters. One of the many models is the Blastwave model, whose basic assumptions are the presence of a boost-invariant expansion, an overexpansion and the existence of a specific superplane in spacetime at which the hadronic matter is released in a jump from the fireball. The author of this paper attempts to find the best choice of the two main parameters of this model by means of the DRAGON program [9], which includes the effect of resonances, by fitting the spectra in the forward momentum.

Chapter 1

Conte view of the structure mpor ary'
 masses

1.1 Element'arn'l `c'astice

The elementary unit of matter is the elementary which is andivisible object with certain physical properties. Under certain circumstances, stable structures are formed over a period of time, which can be divided according to the degree of elementarity into: cell, molecule, atom, shell and nucleus.

An atom is made up of a shell and a nucleus. The shell of the atom consists of electrons in an arrangement determined by electromagnetic interaction with an oppositely charged ndes The nucleus is composed of nucleons - protons and neutrons, whose constituents are a triplet of qads

In the last century it has become andithat nature is not limited to protons, neutrons and electrons, but is made up of a much larger group of particles, which are in turn made up of a relatively small group of quarks and this idea is called the standard model, which, together with quantum chromodynamics, quantum electrodynamics, where interactions are mediated by a powerful intermediate constitutes the basis of modern particle physics.

1.2 Standard model

We divide the elementary particles of the standard model into three groups quarks, gluons and intermediate bosons. For each particle there is also a aliparticle, $\mathrm{p}^{\vee} \mathrm{ri}^{\wedge} \mathrm{cem}^{\vee} \mathrm{z}$ in some cases the particle and the antic particle are iddghtove divide quarks and leptons into three generations, the first one being stable and the other two being unstable excitations decaying with weak interaction on the first generation
elementary particle.
Quarks are carriers of the colour charge of the strong interaction. There are stars in the bound
state to other quarks, so that "the "set" of colours was retd Therefore, quarks form stars hadron: either a baryon, in which all three quarks have a different colour, or a meson, in which
which is a quark and an antiquark, i.e. a colour and its anti-colour. Theoretically, the following have been determined
and more complex structures such as the pentaquark, which is composed of four quarks and one antiquark.

Quarks never occur ididal but are embedded in the hadron together with other quarks. If we tried to pull two quarks apart, their potential energy would grow linearly with their distance. The properties of the gluon, the boson that mediates the strong interaction, play a very important role here. The gluon is immaterial and has a strong interaction charge, which makes it easy to form and interact with other gluons. Eventually, as the quark is pulled away, the binding energy increases sufficiently to give rise to a quark-antiquark pix This recombines with the original quarks that were pulled away and we have both quarks back in the bound state.

The interaction between the particles is mediated by intermediate bosons. This nars that the energy and momentum are transferred in quanta by intermediate bosons, which exist often very shortly, and so due to the uncertainty principle their mass has a certain uatily

Figure 1.1: Elementary part of the Standard Model. [11]

1.3 Quark-gluon plasma

The quark-gluon plasma, abbreviated QGP, is a state of matter governed by the theory of quantum chromodynamics (QCD). The original proposition concerning the quark-gluon plasma is
[14]. If the matter - hadronic gas is condensed into a volume of sufficient energy density
gies $\left[1 \mathrm{GeVfm}^{-3}\right]$, the quarks of different hadrons find themselves close enough to each other, they are destined to be exclusively bound to their hadronic triple or pair and can
to move freely. Thus, if we can sythat
to individual hardons becomes meaningless, then we call this state quark-gluon with plasma.

However, no theory can do without experimental facts and therefore we need a device for QGP production. Keexpect that if we have a sufficient energy ratio of two ions $\mathrm{t}^{2} \mathrm{e}^{\imath} \mathrm{zk}$ of an element, we will achieve the necessary energy density for the existence of a QGP phase for a period of about $10^{-23} \mathrm{~s}$. We call such a collision the Little Slice. By the nature of the QGP, it is impossible to ineggit directly, but by observing the emergence of more hadrons we could lan lot about this state. For this purpose, accelerators and pdetectors are able to measure the edge energy needed for QGP formation and can efficiently observe the produced ads

1.4 QGP and Velky' tresk

In the large volume theory we consider the dissolution of a large amount of matter from a state of high density. If the theory is consistent with reality, the matter must have passed through the QGP state within $10 \mu \mathrm{~s}$ after the onset of the Big Bug If we can investigate this state of matter sufficiently, we will gain further insights into the origin of the universe. The problem lies in some of the differences between the Big Bang, from which the universe originated, and the Little Bang, which we can create at the

1. Much faster hadronization of the fireball of Mal'e kdo

While for the Big Bang we assume that the expansion of the QGP fireball is slowed down by the gravitational acceleration of a huge amount of accumulated matter, for the Little Bang we consider the expansion into the vacuum. We can derive the characteristic hadronization times of the QGP of the Large Mass Spectrum at $\tau_{b b}=10 \mu \mathrm{~s}$ and of the Small Mass Spectrum at $\tau_{m b}=$ $10^{-17} \mu \mathrm{~s}$.

2. Nonzero baryon force in the fireball of Mal'e $\$ \$ \mathbf{o}$

In the post-atomic universe, the baryon force was practically zero, unlike in the ex-perimeter. The asymmetry between matter and antimatter at the acceleration
is described by the "tight baryon equation $B=N_{B}-N_{B}{ }^{-}$. Ideally $B=0$. In the case of a collision, we produce antiparticle-antiparticle pairs, and thus the number of detected particles N grows while $\rightarrow B$ is maintained, or at least $B / N 0$. The problem of asymmetry can theoretically be overcome by extrapolation of the baryon chemical adill addition, by increasing the energy of the interface we increase the number of arisormed.

3. Much higher energy density.

According to the Big Bang theory, the universe evolves from a continuous singularity characterized by, among other things, infinite density and temperature. By studying the accelerator we can only reach finite values.

Chapter 2

Quantum statistical mechanics

2.1 Quantum statistical mechanics

We define the density matrix as a self-consistent, positive operator with unit hundred.

$$
\rho^{\wedge *}=\rho^{\wedge} \quad \forall / \psi>\in \mathrm{H}<\psi / \rho^{\wedge} \psi>\geq 0 \quad \operatorname{Tr} \rho^{\wedge}=1
$$

The density matrix can be defined using the positive terms w_{j} and the vectpr $\psi_{j} \in \mathrm{H}$ ret

$$
\begin{equation*}
\mathbf{W}^{\wedge}=\sum_{i} w_{i} \frac{\mid \psi_{i}><\psi}{k_{i} \psi \mid \psi} \quad \rho^{\wedge} \frac{\mathbf{W}^{\wedge}}{=} \tag{2.1}
\end{equation*}
$$

Therefore, using the density matrix we can also calculate the mean value of the observable
$\mathrm{O}^{\wedge}=\mathrm{O}^{\wedge}$ *:

$$
\mathrm{O}^{-}=\sum_{\substack{w \\ j}}^{<_{j} \frac{\psi j\left|O^{\wedge} \psi j\right\rangle}{\left\langle\psi_{j} \mid \psi_{j}\right\rangle}}=\operatorname{Tr}\left[\mathrm{P}^{\wedge} \mathrm{O}^{\wedge}\right] .
$$

In this example we will use the natural units $\mathrm{k}=c=k_{B}=1$.

2.2 The truest difference between the Grandkanonicky ${ }^{\prime}$ file

Let us have a quantum stendescribed by two commuting operators $\mathrm{H}^{\wedge}, \mathrm{B}^{\wedge}$ i.e. hamiltonian and baryon číe Since we will be working with general states and not just the eigenstates of the baryon ficeoperator, we will actually be building a grand canonical statistical ensemble where the baryon force is not cel

Let the Hamiltonian have a discrete spectrum $H^{\wedge} P^{\wedge} j=E_{j P^{\wedge}}$, where ${ }_{P \hat{j}}$ is an orthogonal projector onto the proper subspace. Let us define the common set of orthogonal projectors on their own subspaces $\left.{ }_{\left\{P^{\wedge} l\right.} \quad\left|\quad H^{\wedge} P^{\wedge} l=E_{l P^{\wedge} l} \wedge_{B^{\wedge} P^{\wedge} l}=b_{l} \mathrm{P}^{\wedge}\right|\right\}$.

Let us now consider a statistical ensemble of states with different values of the baryon pressure and energy, which we describe by means of the density matrix:

$$
\mathrm{\rho}^{\wedge} \sum_{l}{ }_{l} \frac{P_{l} l}{\mathrm{Tr}^{\mathrm{P}}{ }_{l}^{\prime}}
$$

where p' ad' ad' ame assumes that $\operatorname{dim}_{P l}=\operatorname{Tr}_{P 7}<+\infty$.
We know the mean values of the energy E^{-}and the baryon ${ }^{-} b$:

$$
\mathrm{E}^{-}=\operatorname{Tr}\left[\mathbf{\rho}^{\wedge} \mathbf{H}^{\wedge}\right]=\sum_{l}^{\sum_{w} E_{l l}} \quad \wedge{ }^{-} b=\operatorname{Tr}\left[\mathbf{\rho}^{\wedge} \mathbf{B}_{l}^{\wedge}\right]=\sum_{w b_{l l}}
$$

Let us now ask what is the nejpravd"epodobn ${ }^{\text {ej }}$ "s density matrix, or equivalently what is the nejpravd`epodobn`ej`s difference between finding different values of the energy and the baryo-new foce Introduce entropy:

$$
S=-\operatorname{Tr}\left[\rho^{\wedge} \ln \rho^{\wedge}\right]=-\sum_{l} w_{l} \ln w_{l}
$$

and we will maximize it for the given conditions, for $\mathrm{E}^{-},{ }^{-} b$.
where $\beta, \ln \lambda$ are Lagranger multipliers. Sometimes we denote $\mathrm{e}^{\beta \mu}=\lambda$ as fugacity, where μ is the baryon chemical

Let us look for an option w_{j} so that the function $\Lambda\left(w_{1}, w_{2}, \ldots\right)$ has a maximum in it. Because

$$
\mathrm{a}^{2} \Lambda(w, w, \ldots)=-\frac{\sum}{w_{l}}<0 \text { on } w_{l} \in(0,1)
$$

lies the maximum at the stationary point of the function - i.e. at the pinhere w_{l} is sifed

$$
\emptyset{ }_{w} 1 \partial \Lambda=0 .
$$

We're lot out of it:

$$
\begin{aligned}
& w_{l}=\underset{G}{\mathrm{Z}-1} e-\beta\left(E_{l}-\mu b_{l}\right)=\left\langle\sum_{G}^{1 \mid \mathrm{Z}-1 e-\beta\left(\mathrm{E}^{\wedge}-\mu \mathbf{B}^{\wedge}\right)}\|/\|>\right. \\
& \text { where } Z_{G}=\mathrm{e}^{\alpha-1}=\mathrm{e}^{-\beta(E t \mu b)} \text { is called the partition function. }
\end{aligned}
$$

And so we lae
enough:

$$
\begin{equation*}
\mathrm{E}^{-}=-\partial_{\beta} \ln Z_{G} \quad \mathrm{~B}^{-}=-\frac{1}{\theta^{\prime}} \partial \ln Z_{G} . \tag{2.3}
\end{equation*}
$$

For the density matrix in this state we lave

$$
\boldsymbol{\rho}^{\wedge} \stackrel{e-\beta\left(\mathbf{H}^{\wedge}-\mu \mathbf{B}^{\wedge}\right)}{=} \operatorname{Tr}^{e-\beta\left(\mathbf{H}^{\wedge}-\mu \mathbf{B}^{\wedge}\right)} .
$$

For the partition function
we lae

$$
\begin{equation*}
Z_{G}=\operatorname{Tr}^{e-\beta\left(\mathbf{H}^{\wedge}-\mu \mathbf{B}^{\wedge}\right)} \sum_{n}^{\sum_{n}}\left\langle\left.\mathrm{n}\right|^{e-\beta\left(\mathbf{H}^{\wedge}-\mu \mathbf{B}^{\wedge}\right)} \mid n\right\rangle \tag{2.4}
\end{equation*}
$$

Since Tr is representationally invariant, we can use any ortho-normal basis. This allows us to learn a basis of occupation rules for non-interacting pasinteraction is then sometimes introduced by means of fault development.

2.2.1 Bosons and fermions

Consider a system of indistinguishable and non-interacting particles described by two commuting operators, the Hamiltonian H^{\wedge} and the baryon operator B^{\wedge}. Let the single-valued hamiltonian $\mathrm{H}^{\wedge}{ }_{(1)}$ takd only discrete v申lues $\mathrm{H}^{\wedge}{ }_{(1)} \boldsymbol{j}>=\epsilon_{j} \boldsymbol{j}$ $>$, where $j>$ is an eigenvector. On the Fock space we introduce a symmetrized or antisymmetrized basis of the containment dmets

$$
\left.\left\{\mid(S / A),{ }_{n 1}^{(b)_{1}},{ }_{n 2}^{(b)},{ }_{n}{ }^{(b)}\right)_{3} \ldots\right\rangle
$$

where $n^{\left(b^{\mathrm{i}}\right)}$ are the occupation numbers of the single-variable states $\| i>$, for which $\left.\mathrm{H}^{\wedge}{ }_{(1)} / i>=\epsilon_{j}\left|i>\wedge B^{\wedge} / i>=b_{i}\right| i>\right\}$.

For the total Hodifock space) and baryon space we

For the construction of the grand canonical set we use formula (2.4), which has the form in our chosen base:

Because all combinations of the occupation clauses remain (if indy contained, we can change the order of the sum and product. We draw all states with free N total number of ats

$$
Z t=\begin{aligned}
& , Q_{i \sum \mathrm{n} \infty=0}^{i} \mathrm{e}^{-n i \beta((i-\mu b i)} \text { for bosons. } \\
& Q_{i} \sum_{n}^{1}=0_{i}
\end{aligned} \mathrm{e}^{-n i \beta((i-\mu b i)} \text { for fermions. }
$$

We add sums (for bosons under the condition that ${ }^{-n i \beta(i-\mu b i)}<1$)

$$
\begin{equation*}
\ln Z_{F^{+}, B-}^{(t)}= \pm \sum_{i}^{\sum} \ln \left(1 \pm \mathrm{e}^{-\beta((i, \mu b i)}\right), \tag{2.5}
\end{equation*}
$$

where the sum is the sum of all single-particle states, the upper sign is valid for fermions and the lower for bosons.

For the mean value of the baryon pressure from (2.3) we lae

$$
\begin{equation*}
\mathrm{B}^{-}=-\frac{1}{B} \partial^{\mu} \ln Z_{F^{+}, B-}^{(t)}=\sum_{i} \frac{W_{\text {ould }}}{1 \mp e \beta\left(e_{i}-\mu b\right)_{i}} \tag{2.6}
\end{equation*}
$$

Hence the Bose-Eistain and Fermi-Dirac divide \qquad 1 difference between-
If we sum in (2.5) over states with $b_{i}>0$ and states with $b_{i}<0$ (sand assume that the possible states for ${ }^{\prime} \mathrm{c}$ ' astics and anti' c 'astics are the sпwe \mathscr{G}

$$
\begin{equation*}
\ln Z_{F^{+}, B-}^{(t)}= \pm \sum_{i}^{\sum_{i}} \ln \left(1 \pm \mathrm{e}^{-\beta(\epsilon i-\mu b i)}\right)+\ln \left(1 \pm \mathrm{e}^{-\beta(\epsilon i+\mu b i)}\right), \tag{2.7}
\end{equation*}
$$

where the sum of $\quad{ }_{i}$ will now denote the sum of all states with $b_{i}>0$. Using $\lambda^{b} \mathbf{i}=e^{\beta \mu b} \mathbf{i}=e^{\frac{\mu}{T}} \mathrm{~W}$ e could modify the previous relation to:

$$
\begin{equation*}
\ln Z_{F^{+}, B-}^{(t)}= \pm \sum_{i}^{\sum_{i}} \ln \left(1 \pm \lambda^{b} \mathrm{i} \mathrm{e}^{-\beta \epsilon} \mathrm{i}\right)+\ln \left(1 \pm \lambda^{-b} \mathrm{i} \mathrm{e}^{-\beta \epsilon} \mathrm{i}\right) . \tag{2.8}
\end{equation*}
$$

By replacing the baryon equation by a lepton equation, we could use the same procedure to derive the equations for leptons. By allotving only the state $b_{i}=1$ we obtain a system of " c 'astics and anti' c 'astics of the same type.

2.2.2 Density of states

We consider a quantum mechanical problem with an "c'asticity in an infinitely deep potential well - a box $<x 0, L><0, L><0, L>$. We introduce periodic boundary conditions particles on the which allow for transparent boundary conditions and in the later limit $V \rightarrow \infty$ the particular boundary conditions will not be cill

$$
\psi\left(x_{i}=0\right)=\psi\left(x_{i}=L\right)
$$

We obtain a periodic wave of similar shape to the de Broglie wave, but the momentum we now have quantum The "fineness" of the quantum channel is determined annihilation:

$$
\psi(x)=e^{j p \longrightarrow x}
$$

$$
p \rightarrow=\frac{2 \pi}{L}\left(k_{1}, k_{2}, k_{3}\right) \text { where } k_{i} \in \mathrm{Z} .
$$

Let f be areal function of a real ϵ_{n} are real nondes Let's take the sum of

$$
\left.{\underset{\mathrm{n}=0}{\infty}\left(\epsilon_{n}\right.}_{f}^{\epsilon_{n}}\right)={ }_{0}^{\mathrm{J}} d \mu_{D}(\epsilon) f(\epsilon)
$$

where in the integral we generate the measure ret

$$
d \mu_{D}(\epsilon)=d_{\mathrm{n}=0}^{\infty} \vartheta\left(\epsilon-\epsilon_{n}\right) .
$$

The measure therefore determines how many "riba" cells there are at a given point ϵ. If there is a function g "ind
with a continuous non-zero first on $<0,+\infty>$ sdahat it appropriately
derivative g^{r}
approximates trend ϵ_{n}. So, for example:

$$
\forall n \in \mathrm{~N}_{0} \quad\left|g(n)-\epsilon_{n}\right|<\delta_{1} \quad \wedge \quad \forall x \in<n-1, n>:\left|g^{\mathrm{r}}(x)-(g(n)-g(n-1))\right|<\delta_{2}
$$

where $\delta_{1,2}>0$ are sufficiently small. The function can be set to $<\infty \theta,+\quad>$ invert and approximate the measure in the previous integral:

$$
\begin{aligned}
& d \mu_{D}(\epsilon) \approx d\left(g^{-1}(\epsilon)\right) \\
& \underset{\mathrm{n}=0}{\overbrace{\approx}^{\infty} f\left(\epsilon_{n}\right)}{ }_{0}^{\mathrm{J}} d\left(g^{-1}(\epsilon)\right) f(\epsilon)={ }_{0}^{\mathrm{J}} d \epsilon \frac{d g^{-1}(\epsilon)}{d \epsilon} f(\epsilon) .
\end{aligned}
$$

The preceding procedure can be easily generalized to the following higher-dimensional variant:
where J is a suitable \tan In the case of a boxdd crystal $J=V /(2 \pi)^{3}$. To simplify the procedure, we work with the ${ }^{\text {instead of the sum, which is motivated by the }}$ fhat in the imit L the spectrum of the impulse operator is conas We replace the sum of the above procedure by the integral of the foxig

$$
\begin{equation*}
\sum_{i} \quad \frac{\mathrm{~J}}{[\ldots]=g \quad \frac{V d p^{3}}{(2 \pi)^{3}}[\ldots],} \tag{2.9}
\end{equation*}
$$

where, in addition, we generally use the degeneracy factor g, which denotes further degrees of freedom to expand the phase space into further dimensions. We have derived this for periodic boundary conditions or arbitrarily large volumes.

2.2.3 Fermi and Bose "c'astic and anti`c'astic gases of one type

By allowing the state with baryon ' $\mathrm{c}^{\prime} 1 \mathrm{c}$ ' 1 s only $b_{i}= \pm 1$ in (2.8), we derive the relation for
$\ln Z_{F}^{(t)}{ }_{B-}$ for ' c^{\prime} 'astic and anti ${ }^{c}$ ' astic gas of one type. If we continue with (2.9), we get mute:

$$
\begin{equation*}
\ln Z_{F / B}(V, B, \lambda)= \pm g V^{\mathrm{J}} \frac{d p^{3}}{(2 \pi)^{3}} \ln \left(1 \pm \lambda \stackrel{-\beta v_{\mathrm{p} 2+\mathrm{m} 2}}{\mathrm{e}}\right)+\ln \left(1 \pm \lambda^{-1} \stackrel{\mathrm{e}-\beta v_{\mathrm{p} 2+\mathrm{m} 2}}{ }\right) \tag{2.10}
\end{equation*}
$$

where the upper sign is valid for fermions, the lower for bosons and the " c ' ast at $\boldsymbol{\lambda}^{-1}$ corresponds to atićadiy.
Using the relation for the grand canonical duill

$$
\Omega(T, V, \mu)=-P V=-\beta^{-1} \ln Z_{t},
$$

where P is the pressure, we

$$
\begin{equation*}
P(B, \lambda)=F g \quad \frac{d p^{3}}{(2 \pi)^{3}}\left[\ln \left(1 \pm \lambda \mathrm{e}^{-\beta v_{p 2+m 2}}\right)+\ln \left(1 \pm \lambda^{-1}\right)\right] \tag{2.11}
\end{equation*}
$$

where g is the degeneracy factor, see the conclusion of subsection 2.9 , and where the upper sign is valid for fermions, the lower for bosons, and the value at λ^{-1} corresponds to appitits

2.2.4 Photon gas

For the photon gas, we can derive a simple equation of state from (2.11), which corresponds to the theory of lutcotyadiation. For the photon gas: $m=0, \epsilon_{i}=p$, in the integral we omit the antiparticle multiplied by λ^{-1} and set $\lambda^{b} i=1$. The last two assumptions are justified by the fact that the photon and the antiphoton are indistinguishable pats Therefore, the addition of a photon can be interpreted as the addition of an antiphoton, and the chemical potential can be considered to be zero. Teeling for the antiparticle states disappears also due to the iadaddFherefore, by substituting the above assumptions into (2.11), switching to spherical coachas and introducing the substitution $x=p / T$, we obtain the equation of state of the photon gas:

$$
P=-\frac{4 \pi g T^{4}}{(2 \pi)^{3}} \int_{0}^{\infty} d x x^{2} \ln \left(1-\mathrm{e}^{-x}\right)
$$

Because the integral is equal to $-\pi^{4} / 45$ we

$$
\begin{equation*}
P=g \frac{\pi 2}{90} T^{4}, \tag{2.12}
\end{equation*}
$$

where for photons $g=2$ (polarization). D'iky of the relation resulting from the definitions:

$$
\mathrm{E}^{-}(T)=-\partial_{\beta} \ln Z_{t}=-\partial_{\beta}-B P V=3 P V
$$

Thus, we obtain a relation for the pressure of the radiation (the ultrarelativistic limit for the limbic frequency, i.e. for $p \gg m$):

$$
P=\epsilon(T) / 3,
$$

where $\epsilon(T)$ is the energy density of the electromagnetic field. From here we can easily determine the well-known Stefan-Boltzmann constant.

2.2.5 Bag model

The original contribution to this model is [12]. The bag model is a primitive model of the QGP hadronization process. Since we are working with high energies, we can to neglect the masses of all QGP and HG (Hadron Gas) particles due to their Momentum. However, the degeneracy factor is a higher value, which multiplies the dimension of the phase space. We take into account that the phase space of fermions is somewhat smaller than that of bosons due to the Pauli exclusion principle. More precisely, $7 / 8$ times small This is shown in [5] where this example is tafrom.

$$
g_{Q t P}=g_{t}+{ }_{8}^{7} \times 2\left(\mathbf{a} \times g_{q}+g_{E W} \approx 56.5,\right.
$$

where for the gluons, the quarks:

$$
\begin{gathered}
g_{t}=2(\text { spin }) \times\left(N_{c}^{2}-1\right)(\text { color })=16, \\
g_{q}=2(\text { spin }) \times N_{c}(\text { color }) \times n_{f} \approx 15 \\
, \\
g_{E W}=2(\gamma)+{ }_{8}^{7} \times 2\left(\text { ám } \times\left(2(\text { spin }) \times 2(\mathrm{e}+\mu)+3\left(v_{e} L v_{\mu} L v_{\tau} \mathrm{L}\right)\right)=14.25 .\right.
\end{gathered}
$$

We're replanting: $N_{c}=3$ (number of $\begin{array}{ll}\text { elors), } \\ n_{f} & 2.5 \text { (effective number of nawe). For }\end{array}$ v we only consider left-handed neutrinos and right-handed antineutrinos and do not assume tau production.

We estimate the hadronic gas in the zero point by the pion gas and add the electroweak pats

$$
g_{H t}=3\left(\pi^{+} \pi^{-} \pi^{0}\right)+g_{E W} \approx 17.25 .
$$

During hadronization, both HG and QGP pressures are therefore:

$$
\begin{equation*}
\boldsymbol{P}_{H}=\boldsymbol{g}_{Q t P} \frac{\pi 2}{90}{ }_{T H}^{4}-\mathrm{B}=\boldsymbol{g}_{H t}{ }_{90}^{\pi 2}{ }_{T H}^{4} . \tag{2.13}
\end{equation*}
$$

From the pressure for the photon gas modelling the QGP we subtract the so-called bag constant
${ }^{\mathrm{B} 4} \approx 190 \mathrm{MeV}$ obtained by fitting the experimental data, this constant is represents the latent heat QGP. If we did not introduce this constant, then $P_{Q t P}>P_{H t}$ would always be valid and matter would be constantly in a quark-gluon plasma state. We can also think of the constant B as the pressure that pushes the
physical vacuum to
proton hold it together," We thus estimate the temperature of and

$$
T_{H}=\mathrm{B}^{\frac{1}{4}} \quad 900^{\frac{1}{4}} \approx 2 \Delta g{ }^{2} \approx 130 \mathrm{MeV} .
$$

Another possibility to determine T_{H} is to use the formula for the radiation pressure (ultra-relativistic limit) and the energy density:

$$
P=-\frac{\epsilon}{3}
$$

Since the proton is the most abundant quark sene can estimate the energy density at hadro-nization as:

$$
\epsilon_{H}=\frac{m p}{(1 \mathrm{fm})^{3}}=1 \mathrm{GeVfm}^{-3} .
$$

Then, by substituting the energy density into the Boltzmann relation, we obtain the pressure with which we can estimate the hadronization temperature:

$$
T_{H}=160 \mathrm{MeV}
$$

Chapter 3

Sub-black boost-invariant expanding fireball

3.1 Notes

1. I use formulas in the text:

$$
\begin{align*}
& \delta(f(x))=\sum^{\sum} \underline{\delta(x-x i)} \text { where the sum of } \mathrm{b}^{\wedge} \mathrm{e}^{\wedge} \mathrm{z}^{\prime} 1 \mathrm{p} \text { res points where } \mathrm{f}(\mathrm{x}) \text { is } \\
& \text { zero } \tag{3.1}
\end{align*}
$$

and makings

$$
\begin{equation*}
\delta^{+}(f(x))=\vartheta(x) \delta(f(x)) \tag{3.2}
\end{equation*}
$$

2. For the "cty ${ }^{\wedge} r$ vector, we often denote by $a^{\mu}=a$, without empasi that it is a ${ }^{c}$ cty ${ }^{\nu} \mathrm{r}$ vector. However, I use the symbols a and $_{\mu}{ }^{\mu}=a^{2}$. I denote the threedimensional vectors by $\rightarrow a$.
3. frequently used formula for the fourth-order stability of the crystal is:

$$
\begin{equation*}
p^{2}=E^{2}-p \rightarrow^{2}=m^{2} \tag{3.3}
\end{equation*}
$$

therefore for the following defined $D p$

$$
\begin{equation*}
D p=2 \delta^{+}\left(p_{\mu} \stackrel{\mu}{\mathrm{p}}-m\right)^{2} d \stackrel{4}{p}=\frac{d p^{3}}{E} \tag{3.4}
\end{equation*}
$$

3.2 Coordinates

3.2.1 Spatiotemporal coordinates

The following cordse suitable to describe the sub-black boost invariant expansion:
Let us define the super-surface on which we define the frost. We leave it as a general superplane in the fourth space. In the Blastwave model we then introduce a more
specific definition.

Above the surface of the frost:

$$
\begin{equation*}
\sigma=\left\{x^{\mu} \mid \text { superplane in 4-dimensional space }\right\} \tag{3.5}
\end{equation*}
$$

But we will introduce quantities that we will use to describe the individual frequencies of the expanding fireball in the laboratory

Spatial vector of the fourth part of the fireball in the laboratory sun

$$
\begin{equation*}
x^{\mu}=(t, x, y, z)=(t, \rightarrow x) \tag{3.6}
\end{equation*}
$$

C^{\wedge} ty ${ }^{\wedge}$ thvelocity कhe expelling fireball with positional x^{μ} :

$$
\begin{equation*}
U^{\mu}=\frac{d x^{\mu}}{d \tau}=\mathbf{q} \frac{\left(V_{0}, V \rightarrow\right)}{1-V_{0}^{2} V \rightarrow 2} . \tag{3.7}
\end{equation*}
$$

3.2.2 Co-ordinates of the " \mathbf{c} 'astice

For the description of a particle in a laboratory system we define the following vales
$C^{\imath} t y^{\wedge} t y^{\wedge} c^{\prime}$ asticity:

$$
\begin{equation*}
p^{\mu}=\left(p^{0}, p \rightarrow\right) \tag{3.8}
\end{equation*}
$$

The speed of the acceleration is inferior:

$$
\begin{equation*}
y=-2 \ln ^{\ln +p_{z}}{ }^{p^{0}-p_{z}} \tag{3.9}
\end{equation*}
$$

The velocity of the particle in the laboratory system

$$
\begin{equation*}
\rightarrow v \stackrel{p \rightarrow}{p 0} \tag{3.10}
\end{equation*}
$$

momentum of the axis:

$$
\begin{equation*}
p \rightarrow_{t}=\left(p_{x}, p_{y}\right)=p_{t}(\cos \varphi, \sin \varphi) \tag{3.11}
\end{equation*}
$$

$P^{\vee} r^{\prime} l^{2} c^{\prime} \iota c^{\prime} \iota c^{\prime}$ ' massoftheasterisk:

$$
\begin{equation*}
m_{t}=\sqrt{\mathrm{m}} 2+p_{t}^{2} \tag{3.12}
\end{equation*}
$$

Energy of the particle in the laboratory system:

Energy of a particle in the local system x^{μ} :

$$
\begin{equation*}
E^{*}=\sqrt{ } \frac{1}{1-V^{2}}\left(p^{0}-V \rightarrow_{p \rightarrow}\right) \tag{3.14}
\end{equation*}
$$

We can easily it pays:

$$
\begin{equation*}
p^{\mu}=\left(m_{t} \cosh y, p_{t} \cos \varphi, p_{t} \sin \varphi, m_{t} \sinh y\right) \tag{3.15}
\end{equation*}
$$

$$
\begin{equation*}
E^{*}=p u_{\mu}{ }^{\mu} . \tag{3.16}
\end{equation*}
$$

3.3 Hydrodynamic description of the relativistic relation

In the hydrodynamic description of the relativistic relation, we introduce the following sigs Density of the number of "c'astic:

$$
\begin{equation*}
n(\ngtr t) d^{3} \mathrm{x}=n\left(x^{\mu}\right) d^{3} \mathrm{x}=\text { po cet }{ }^{\circ} \mathrm{c}^{\prime} \text { astic } \mathrm{v} \text { volume } d^{\beta} \mathrm{x} v \mathrm{v}^{\text {cose } \mathrm{t}} \text {. } \tag{3.17}
\end{equation*}
$$

Total number of ${ }^{\wedge} c$ 'astic in case t :

$$
N^{(t=k o s t)}=d^{3} \operatorname{xn}(x)^{\mu}
$$

In general, we do not have to restrict ourselves to a superplane in spacetime defined by some value of but we can determine the number of worlds passing through a general superplane in tirealculation must be carried out in a more complex way. This is usually done in some models of relativistic relations, where we define a freezing superplane, which we then integrate over. On this topic, see also Subsection 3.5.

Current ${ }^{\text {c }}$ 'astic:

$$
\begin{equation*}
\rightarrow j(\ngtr t)=\rightarrow j(x)^{\mu} \tag{3.19}
\end{equation*}
$$

is a vector such that for any infinitesimal element of the surface $d S \rightarrow$ at the point $\rightarrow \boldsymbol{x}$ it gives the scalar product $\boldsymbol{d} \rightarrow \boldsymbol{x} \rightarrow \boldsymbol{j}(\geqslant t)$ of the number of particles passing through the given element in time $d t$.
C^{\wedge} th restream:

$$
\begin{equation*}
j^{\mu}=(n(\ngtr t), \rightarrow j(\rtimes t)) \tag{3.20}
\end{equation*}
$$

C^{\vee} aspatial distribution of ${ }^{\wedge} c^{\prime}$ astic:
$f\left(x^{\mu}, p^{\mu}\right) d x d^{33} \mathrm{p}=$ the number of particles in the phase volume $d x d^{33} \mathrm{p}$ at the point $\left(x^{\mu}, p^{\mu}\right)(3.21)$ follows from here:

$$
\begin{align*}
& n\left(x^{\mu}\right)=\int_{d^{3}}^{\int} p f\left(x^{\mu}, p^{\mu}\right), \\
& \rightarrow j\left(x^{\mu}\right)=d^{3} p \rightarrow v f\left(x^{\mu}, p^{\mu}\right) . \tag{3.22}
\end{align*}
$$

Because the particles are located on the mass shell-i.e. $p^{0}(p \rightarrow)=\mathrm{p}^{2}+\mathrm{m} 2=E$, it follows from here by thg formula (3.4):

$$
\begin{equation*}
j^{v}(x)^{\mu}=d_{p 0=E}^{3^{p v}} p_{\overline{\mathrm{p} 0}} f\left(x^{\mu}, p^{\mu}\right)=\quad D p p^{v} f\left(x^{\mu}, p^{\mu}\right) \tag{3.24}
\end{equation*}
$$

Hence the d' ale for $p^{0}=E$:

$$
\begin{align*}
& E \frac{d 3 j v}{d 3 p}\left(x^{\mu}, p \rightarrow\right)=p^{v} f, \quad\left(x^{\mu} p^{\mu}\right), \tag{3.25}\\
& E \frac{d 3 N^{(t=\text { bone })}}{d 3 p}(t, p \rightarrow)=\stackrel{\left.d^{3} x E f, \quad\right)}{\left(x^{\mu}\right.} \quad p^{\mu} . \tag{3.26}
\end{align*}
$$

However, the previous formula is valid only for the integration over the
spacetime plane from constant he More generally, the worlds are calculated and the procedure is more complx See Section 3.5.

3.3.1 Differences in the axis

For the description of the difference of particles in spacetime we use the Lorentzian invariant difire which is a generalization of the non-relativistic difioce which is invariant under the Galilean transformation. This satisfies the requirement that the higher transformed momentum spectrum corresponds in all systems to a higher invariant representing the frequency of occurrencethe particle energy in a given system, i.e. ${ }^{\mathrm{p} 2}+\mathrm{m}^{2}$. The invariance is easily obtained by trans-forming the differential equation of the component of the uncertainty p and by applying the modified formula for the energy. The total number of particles on the chosen space-time superplane is N.

Lorentz invariant distribution:

Production
function:

$$
\begin{array}{cc}
\frac{d^{3}}{N E} \tag{3.27}\\
d 3 p
\end{array}{ }_{0}^{{ }^{d} N^{3}}=\frac{V_{\mathrm{p} 2}+\mathrm{m} 2}{d 3 p} \quad \frac{d^{3}}{N}(p)
$$

Local Boltzmann difference:

$$
\begin{equation*}
f\left(x^{\mu}, p \not\right)=\frac{d 3 j 0}{d 3 p} \propto n\left(x^{\mu}\right) \exp (-E * / T), \tag{3.29}
\end{equation*}
$$

where E^{*} is replaced by (3.14).

3.4 Bjorken's boost invariant expansion

At very high energies, we can use the phenomenological model of the divergent invariant expansion, in which the separation of the produced particles with a given rapidity is approximately uniform in the region between the rapidities of the original particles y_{0}.[2]i.e:

$$
\begin{array}{lll}
\frac{d N_{B}}{}= & N y^{-1} & \in<-y_{0}, y_{0}> \\
\underbrace{A l w a y}_{s} & 0 & \text { otherwise. }
\end{array}
$$

As a consequence, in the limit of $\leftrightarrows \infty$ the expansion (even too hig) occurs in the same way in each system of the set of systems mutually boosted, i.e. in each such system the difference has the shape given by the above relation. The only don with
which we have to Cllwith is the finality $o f_{0}$. We can assume that for boosts in
the region of medium rapidity $y=0$ we approximately achieve uniformity.

3.5 Differences in momentum during

The original work concerning this subsection is [1]. We anchat freezing occurs in every system in the same sub-black proper case, i.e. at $\tau=\tau_{f o}$. Thus, we do not consider the contribution to the eigentime due to the boost-invariant expansion, which is consistent with the boost-invariant expansion of the fireball.

Intuitively, we would and at in order to obtain the difference between the particles, it is sufficient to integrate the invariant difference over the freezing surface (3.43):

$$
\left.E \frac{d N^{3}}{d 3 p}={ }_{\sigma}^{E^{*} \mathrm{f}}, \mathrm{p}^{v}\right)=\stackrel{\mathrm{J}}{{ }^{v} p_{\mu}^{\mu}} \underset{\left(x^{v}\right.}{\text { at }},
$$

but this assumption is wrong. Such a definition would violate the law of conservation of energy. This can be proved after the integration of $E d N$. [1].

Let us define an element of a superplane as a vector which has a norm equal to the surface of the superplane and is a quartic perpendicular to it:

$$
d \sigma_{\mu}=\varepsilon_{\mu v v v_{1}} \partial_{3} x_{\alpha}{ }^{\nu} 1 \partial x_{\beta}{ }^{v} 2 \partial x_{\gamma}{ }^{v} 3 d \alpha d B d \nu,
$$

where α, β, γ are the condassed to parameterize the superplane. Consider now the number of wdthat intersect the hyperplane σ at point x^{μ} and have momentum close to p^{μ} :

$$
\begin{equation*}
\left.d N\left(\sigma, x^{\mu}, \underset{p^{\mu}}{\left(x^{\mu}\right.}\right)=f \quad, \quad \underset{p^{\mu}}{\left(x^{\mu}\right.} \quad d \sigma_{\mu} \quad\right) p^{\mu} D p=d \sigma_{\mu}\left(x^{\mu}\right) \frac{d 3 j \mu}{d 3 p}\left(x^{v}, p-\right) d^{3} p, \tag{3.30}
\end{equation*}
$$

where $D p$ comes from (3.4) and the second equality follows from (3.25). meets the requirements of the theorem, let us discuss two choices of hyperplane:

$$
\begin{aligned}
& d \sigma_{\mu}^{(z=k o s t)}=(0,0,-d x d y d t), \quad d \sigma_{\mu}^{(t-k o s t)}=(d x d y d z, 0,0,0) . \\
& \square \\
& d x d y d z^{d 3 n}\left(x^{v}, \rho_{d 3 p}\right) d^{3} \mathrm{p}=\text { number of }{ }^{2} \mathrm{c}^{\prime} \text { asticities in the phase volume } d x d p^{33} \\
& d N= \\
& \square \frac{d x d y d d_{d_{3}}(x \quad v, p \rightarrow)^{3} d p=\text { the number of numbers of }}{\beta_{j}^{p}} \text { the area } d x d y \\
& \text { the area } d x d y \\
& \text { for }{ }^{\circ} \text { cas } d t \text { and } p^{\mathrm{r}} \in(p \pm d p) .
\end{aligned}
$$

From here we can easily go to the general form of the decomposition $d \sigma_{\mu}={ }_{\mu} c d \sigma_{v}^{(x=k o n s t)}$ where $c c_{v}{ }^{v}=1$ determines the unit normal to the hyperplane at point $\boldsymbol{x}^{\widetilde{\mu}}$. Oã̃e

$$
d \sigma p_{\mu}^{\mu}=\left[c p_{\mu}^{\mu}\right] d \sigma=\sum_{v} c^{v}\left[n_{\mu} p^{(v) \mu}\right] d \sigma=\sum_{v} c_{v}\left[d \sigma^{\left(x^{v}=k o s t\right)} p^{\mu}\right],
$$

where $n^{(v)}$ are unit vectors in the direction of the v axes. This veredh at (3.30) is the number of wdthat intersect the hyperplane σ at point x^{μ} and have momentum close to p^{μ}.

Let's now modify the formula for $d N$ into the form of an invariant distribution by applying the formula for $D p$
(3.4) and for the second equality (3.25) and we

$$
E \frac{d 3 N^{(\sigma)}}{d 3 p}=\begin{array}{lll}
\mathbf{p}_{\mu}^{\mu} & f_{\sigma} & \left(x^{v}=p^{v}\right) \tag{3.31}
\end{array}{ }_{\sigma}^{\mathrm{J}} d \sigma_{\mu} \frac{d 3 j \mu}{d 3 p}\left(x^{v}, p \rightarrow\right) .
$$

For the production function (3.28) we

$$
\begin{equation*}
S(x, p) d^{4} \mathrm{x}=d \sigma_{\mu}(x) p^{\mu} \mathrm{f}(x, p) . \tag{3.32}
\end{equation*}
$$

3.6 Symmetrization of the production function, parameterization

We will now review the theory of the effect of symmetrization for indistinguishable bosons on their pro- duction functions, but we will not further investigate the data related to this part.
Due to the properties of indistinguishable particles, the amplitude A_{N} of the production of particles is symmetric or antisymmetric in the momentum of the produced pet us consider the amplitude of the production of an $\mathrm{N}-{ }^{-} \mathrm{c}^{\prime}$ astic system with momenta p^{μ} arising at five points $x^{\mu}{ }_{i}$
where $£\{1,2 \ldots N$. Then due to symmetry and antisymmetry, respectively, the truth of the formation of a system of partic les with momenta p^{μ} in the region G of the fobving

$$
\begin{aligned}
& A_{N}\left(p^{\mu}, G\right)={ }^{\int} d^{3 N} X^{\sum} \operatorname{sgn} \pi A^{\sim}\left(p^{\mu} \quad, x^{\mu}\right),\left(p^{\mu} \quad, x^{\mu}\right) \cdots\left(p^{\mu}\right. \\
& \left.\underset{\pi(1)}{ } \quad \mathrm{X}^{\mu}\right),{ }_{\pi(2)} \quad 2 \quad \pi(N) \quad N \\
& \pi \in S n \\
& P_{N}\left(p_{i}^{\mu}, G\right)=A_{N}\left(p^{\mu},\right. \\
& G) \text {, }
\end{aligned}
$$

where for bosons we consider $\operatorname{sgn} \pi=1$ and for fermions $\operatorname{sgn} \pi$ is the sign of the permutation.
The effect of symmetrization turns out to be significant for a small region G and it had different
momentum in "r'ades $\Delta p \Delta x \sim \mathrm{k}$. We can investigate this effect for the two-variable axis variant by introducing a correlation function:

If we solve the single-variable spectrum using the production function (3.32), we can

$$
\left.\begin{array}{l}
\text { derive }[6,7] \\
c\left(p_{1}^{\mu}, p_{2}^{\mu}\right. \tag{3.34}
\end{array}\right)=1+\frac{\|^{\int} d^{4} \times S(x, K) \exp (i q x)^{\mid 2}}{E_{1} \frac{d 3 N}{d 3 p} E_{2} \frac{d 3 N}{d 3 p}}=1+\int^{\int} d^{4} \times S(x, K) \exp (i q x)^{\mid 2} d^{2}\left(x S(x, p) d 4 y S\left(y, x^{p}\right)^{\prime}\right)
$$

where $q=p_{-} p_{1}$
$=p 1+p 2$. We take the so-called smoothness approximation: $p p_{1}$
$\approx{ }_{2}$ and K and proceed to the new coadts

$$
c\left(p_{1}, p_{2}\right)-1=C(q, K)-1 \approx \frac{\left.\right|^{J} d^{4} \times S(x, K) \exp (\mathrm{iqx})^{2}}{d 4 x S(x, K))^{2}}
$$

where $c\left(p_{1}, p_{2}\right)=C\left(p_{1}-p_{2^{2}}{ }^{p_{1+p 2}}\right)$.

3.6.1 $\quad \mathrm{N}$ 'astin derivation of the symmetrization effect

I was inspired by the work [8]. The derivation of the symmetrization effect can be suggested as fons

The amplitude of the production can be thought of as a simple wave function of the trajectory and the formation of the trajectory as a measurement on this function.

Univariate production function

Let us consider a point source, in which a particle in the eigenstate of the momentum operator with a difference $r(p)$ with a phase $\varphi\left(x_{1}\right)$ at the point x_{1} independent of its im- pulse can arise. The position of the phase at a certain point is an essential element of this model, because it provides a kind of minimal localization of the origin of an otherwise delocalized de Broglie wave, which we will see later - when centred, it will have a significant \mathbb{C} Ine x -representation wehave:

$$
<x / \psi>=\stackrel{\int}{d p r(p) \mathrm{e}^{i p\left(x-x^{1}\right)} \mathrm{e}^{i \varphi\left(x^{1}\right)} .}
$$

This can be interpreted as an approximation of the production of a particle arising at a point x_{1} with the state phase $\varphi\left(x_{1}\right)$ in the x-representation. Let us now consider a more general source in the pulse with a slowly varying difference function $S=/ a(x, p)^{2}$, where $a(x, p)$ is the amplitude:

$$
<x \mid \psi>=\iint^{\int} d x^{\mathrm{r}} a\left(x^{\mathrm{r}}, p\right) \mathrm{e}^{i p\left(x-x^{\mathrm{x}}\right)} \mathrm{e}^{i \varphi\left(x^{x}\right)} .
$$

We can easily proceed to the p-representation, which is more intuitive from the point of view of the naming-production of a particle with a certain momentum, so we denote by $A(p)$:

$$
A(p)=<p / \psi>=\stackrel{\int}{=} d x^{\mathrm{r}} a\left(x^{\mathrm{r}}, p\right) \mathrm{e}^{-i p x}{ }^{\prime} \mathrm{e}^{i \varphi\left(x^{\prime}\right)} .
$$

The locality of the particle can be satisfied here, for eamban exponential ball around the distributed momentum and later on we can improve the smoothness of the distribution function and thus obtain the same result.

We have squared absolute values and usually a centred plot of a finite time interval. Since there is no reason to prefer a different peat any point, we will center this quadrant $\mathrm{je}^{\imath} \mathrm{st}^{\imath \mathrm{e}}$ on all choices of the phase function at all points of production:

$$
\mid A(p)^{\mid 2}=d x^{\mathrm{r}} \quad d x^{\mathrm{rr}} a\left(x^{\mathrm{r}}, p \overline{p\left(\operatorname{xrr}^{\operatorname{xr}}, p\right.}\right) \mathrm{e}^{-i p\left(x^{\left.1-x^{\prime}\right)}\right)} \mathrm{e}^{i\left(\varphi\left(x^{\prime}\right)-\varphi\left(x^{\prime}\right)\right)} .
$$

Let us formally reduce the expression of aHofunctions $-\varphi(x):<,+><\pi$, $+\pi>$ to the integral of the previous ith

J

$$
d \varphi \varphi^{e i\left(\varphi\left(x^{\prime}\right)-\varphi\left(x^{\prime \prime}\right)\right)}=\delta\left({ }^{\mathrm{xr}}-\mathrm{xrr}\right) .
$$

$\{\varphi(x)\}$
The validity of this relation can be formally verified by discretizing the problem or by stating the similarity with the Feynmann integral for the propagator of the system, whose lagrangian
contains only the function, which is the complete time derivative of the function of time and contas
Fesult will be the same if we use the Feynmann integral for the propagator with the same start and end heFor the same starting and ending time
the time evolution operator is converted into an identity and the propagator into a delta function.

After the substitution we obtain the complete truth of the production of one particle with momentum p we get:

$$
\begin{equation*}
P_{1}(p)=/ A(p)^{12}=\stackrel{\int}{\int} d x / a(x, p)^{12}=\stackrel{\int}{=} d x S(x, p) . \tag{3.35}
\end{equation*}
$$

Two-variable production function

Because we have to symmetrize the wave function, we laeenough:

$$
\begin{aligned}
& \left.\left.A\left(p_{1}, p_{2}\right)=<p_{1}\left|<p_{2}\right| \psi_{1}\right\rangle\left|\psi_{2}\right\rangle+<p_{2}\left|<p_{1}\right| \psi_{1}\right\rangle\left|\psi_{2}\right\rangle= \\
& =d x d x_{12} a\left(x_{1}, p_{1}\right) a\left(x_{2}, p_{2}\right) \mathrm{e}^{-i(p 1 \mathrm{x} 1+p 2 x 2)}+ \\
& +a\left(\mathrm{x} 2^{\mathrm{p} 1}\right) a(\mathrm{x} 1, \mathrm{p} 2)^{e-i\left(p x_{12}+p x_{21}\right)} e i\left(\varphi\left(x_{1}\right)+\varphi\left(x_{2}\right)\right)= \\
& \int \\
& =\mathrm{dx1} \mathrm{dx} 2^{e i\left(\varphi\left(x_{1}\right)+\varphi\left(x_{2}\right)\right) e-i\left(p x_{11}+p x\right)_{22}} \\
& a\left(x_{1}, p_{1}\right) a\left(x_{2}, p_{2}\right)+a\left(x_{2}, p_{1}\right) a\left(x_{1}, p_{2}\right) \mathrm{e}^{\mathrm{i}(p 1-p)(x 1-x))} .
\end{aligned}
$$

Using the smoothness of the function $a(x, p)$ in the momenta for $p_{1} \approx p_{2} \approx K=\frac{p 1+p)^{2}}{2}$ we lae

$$
a\left(x_{1} p_{1}\right) a(x, 2 p)_{2} \approx a\left(x, \frac{1}{1} p+p \quad{ }_{2}^{2}\right) a\left(x_{2} \frac{1}{2}\right) .
$$

But let us use $\mid 1+\mathrm{e}^{i y \mid}=1+\cos (y)$ and by averaging over the different phases we get:

$$
\begin{aligned}
& P_{2}\left(p_{1}, p_{2}\right)=\mid A\left(p_{1}, p_{2}\right)^{\mid 2} \approx \\
& \approx \iint x d x_{12}\left|a\left(x_{1}, K\right)\right| 2 \mid a\left(x_{2}, K\right)^{\mid 2}\left(1+\cos \left[\left(p_{1}-p_{2}\right)\left(x_{1}-x_{2}\right)\right]\right) .
\end{aligned}
$$

By introducipg $q=p_{1}-p_{2}$, using the possibility of

$$
\begin{array}{rl}
d x d x_{12} & S\left(x_{1}, K\right) S\left(x_{2}, K\right) \mathrm{e}^{+i q(x 1-x 2)} \\
& =\int d x d x_{12} S\left(x_{1}, K\right) S\left(x_{2}, K\right) \mathrm{e}^{-i q\left(x x_{1-x 2}\right)} \\
& \int d x d x_{12} \mathrm{~S}\left(x_{1}, K\right) S\left(x_{2},{ }^{e i q\left(x_{1}-x_{2}\right.}\right)+e-i q\left(x_{1}-x_{2}\right) 2 \\
& \quad \int^{\int} \\
= & d x d x_{12} \mathrm{~S}\left(x_{1}, K\right) S\left(x_{2}, K\right) \cos \left(q\left(x_{1}-x_{2}\right)\right) .
\end{array}
$$

So do we
$)^{12}$
$\approx \int$
2
$d x$
$S(x, K)$
$P_{2}\left(p_{1}, p_{2}\right)=\mid A\left(p_{1}, p_{2}\right.$

$$
\begin{align*}
\int & d x S(x, K) \\
+ & \mathrm{e}^{i q x} \tag{3.36}
\end{align*}
$$

3.6.2 Parameterization

Let us continue with $c\left(p_{1}, p_{2}\right)$:

$$
c\left(p_{1}, p_{2}\right)-1=C(q, K)-1 \approx \frac{\left.\right|^{J} d^{4} \times S(x, K) \exp (\mathrm{iqx})^{2}}{d 4 \times S(x, K))^{2}}
$$

It turns out that the right-hand side for a reasonable production function is fell described by the following Gaussian:

$$
\begin{equation*}
C(q, K)-1 \approx \exp \left(-q q^{\mu \nu}<\mathrm{x}^{\sim}{ }_{\mu} \mathrm{x}^{\sim}{ }_{v}>\right), \tag{3.37}
\end{equation*}
$$

where we introduce the make

$$
\begin{aligned}
& \text { duce the nake } \\
& \mathrm{x}_{\mu}^{\sim}=x_{\mu}-<x_{\mu}>,<f(x)>\quad \frac{\mathrm{J} d^{4} \mathrm{xS}(x, K) f(x)}{d 4 x S(x, K)} .
\end{aligned}
$$

We can easily check the flatness of the following equations based on the definition and equation (3.3). We then use the second of these to further refineb expression.

$$
4 K K_{\mu}^{\mu}+q q_{v}{ }^{v}=4 m q K^{2} \quad \mu_{\mu}=0
$$

and thus

$$
\underset{\substack{q^{0} \\
b \rightarrow}}{ } \quad \begin{aligned}
& \text { ere }
\end{aligned} \quad B \rightarrow=\frac{k \rightarrow}{\text { Ko }}
$$

and
therefo
re

$$
C(q, K)-1 \approx \exp \left(-q q_{i j}<\left(\mathrm{x}_{i}^{\sim}-b_{i} \mathrm{t}^{\sim}\right)\left(\mathrm{x}_{j}^{\sim}-b_{j} \mathrm{t}^{\sim}\right)>\right) .
$$

By choosing a suitable system, we can simplify the relationship further. The problem is that the system we choose will vary depending on the momentum of the pair of paiteve $\mathbf{t} \boldsymbol{E}$ We choose the so-called out-side-long system:
Longitudinal axis: $\rightarrow \mathrm{I}$ in the direction of the brate
Outward axis: $\rightarrow o$ in the direction of the upper component of a particular K,
Sideway axis: \longrightarrow perpendicular to the fotaxis.
By choosing these coordinates, we guarantee that $B \rightarrow \rightarrow s=0$. Therefore, for the central heart
we have symmetry about the $\rightarrow I$ axis, this is true for all the x-branes that are linear in x_{s} ide,
$\left\langle\mathrm{x}_{i}{ }_{i}, \mathrm{x}_{j}\right\rangle=0$. Therefore, we introduce the Bertsch-Pratt parametrization of the correlation function:

$$
C(q, K)=\exp \left(-q^{2}{ }_{\text {out }} R_{\text {out }}^{2}(K)-q_{\text {side }}^{2} R_{\text {side }}^{2} R_{\text {side }}^{2}(K)-q_{\text {long }}^{2} R_{\text {long }}^{2}(K)-2 q q R_{\text {outside ol }}^{2}(K)\right),
$$

Wh
R2
ere

$$
\begin{aligned}
& R_{\text {out }}^{2} \\
& R^{2}
\end{aligned}
$$

(3.

$$
\begin{align*}
& =<\left(\mathrm{x}^{\sim}=<\mathrm{y}^{\sim}>\right. \tag{3.40}\\
& \left.-\theta_{\perp} \mathrm{t}_{\text {long }}^{2}=<\left(\mathrm{z}^{\sim}-B_{l} \mathrm{t}^{\sim}\right)^{2}\right\rangle \tag{3.39}\\
& > \tag{3.41}\\
& \quad R_{o l}^{2}=<\left(\mathrm{x}^{\sim}-B_{\perp} \mathrm{t}^{\sim}\right)\left(\mathrm{z}^{\sim}-B_{l} \mathrm{t}^{2}\right)>.
\end{align*}
$$

These parameters can be measured and compared with the theoretically derived production function.

3.7 Blastwave model

The original works concerning the Blastwave model are [4, 13]. In the Blastwave model, we anthat the fireball velocity in the z -axis direction does not change, i.e., $V_{z}=$ const. The subzero eigentime: $\tau=\sqrt{1} 2-z 2$

The speed of the pod'eln': $V_{z}=z$,
where t, z are components of (3.6) and V_{z} is a component of (3.7).
This allows us, among other things, to connect the spatial and spatiotemporal velocity. The subspace velocity: $\eta_{s}=\frac{1}{\ln } \frac{1+z}{}=\frac{1}{\ln } \mathrm{z}_{2}^{\frac{1+V}{}}$, $\begin{array}{lll}t-z & 2 & l-V z\end{array}$
However, in the Blastwave model we define a three-dimensional superplane in the space on which we define the freezing using the underlying proper he This can be interpreted as meaning that we neglect the contribution to the proper time from the sub-black expansion and anth at the freezing occurs after a certain $p^{`}$ resn ${ }^{2}$ e defined proper the
Above the surface of the frost:

$$
\begin{equation*}
\sigma=\left\{x^{\mu} / \tau={ }^{\mathrm{t}^{2}}-\mathrm{z2}=\tau_{f o}=\text { const }\right\} \tag{3.43}
\end{equation*}
$$

To describe the sub-black expansion we define:
Increase the speed of the fireball part: $V \rightarrow t=\left(V_{x}, V_{y}\right)=V_{t}(\cos \vartheta, \sin \vartheta)$

With this quantity it is necessary to pay attention to the fact that it is not a higher speed as it is defined. It only occurs in the region of medium rapidity, i.e. $i n_{z}=0$. Radial coordinate of the fireball part: $r=\sqrt{\sqrt{2}+y^{2}}$,
where x, y are the components of (3.6) and $V_{x, y}$ are the components of (3.7).
Using the previous assumptions, we derive the following equations for the four vectors x^{μ} and u^{μ} defined in (3.6) and (3.7) describing the parts of the expanding fireball:

$$
\begin{gather*}
x^{\mu}=\left(\tau \cosh \eta_{s}, r \cos \vartheta, r \sin \vartheta, \tau \sinh \eta_{s}\right), \tag{3.44}\\
d x^{\mu}=\tau r d \vartheta d \eta_{s} d \tau d r, \tag{3.45}\\
u^{\mu}=\frac{1}{\sqrt{1-\left(V^{2}+V^{2}\right)}\left(1, V_{t} \cos \vartheta, V_{t} \sin \vartheta, V_{z}\right),} \tag{3.46}\\
u^{\mu}=\left(\cosh \left(\eta_{s}\right) \cosh \left(\eta_{t}\right), \cos (\vartheta) \sinh \left(\eta_{t}\right), \sin (\vartheta) \sinh \left(\eta_{t}\right), \sinh \left(\eta_{s}\right) \cosh \left(\eta_{t}\right)\right), \tag{3.47}\\
T h e_{z}=\tanh \eta_{s} . \tag{3.48}\\
V_{t}=\frac{\tanh _{\eta t}}{\cosh \eta_{s}} \tag{3.49}
\end{gather*}
$$

We can easily

$$
\begin{equation*}
E^{*}=p u_{\mu}{ }^{\mu}=\left(m_{t} \cosh \left(\eta_{s}-y\right) \cosh \left(\eta_{t}\right)-p_{t} \sinh \left(\eta_{t}\right) \cos (\varphi-\vartheta)\right) . \tag{3.50}
\end{equation*}
$$

Let us use the $d \sigma p_{\mu}{ }^{\mu}=\tau r m_{f o t} \cosh \left(\eta_{s} y\right) d \eta_{s} \operatorname{drd} \varphi$, which follows from the properties of the above- surface. We introduce the local Boltzmann difference (3.29):

$$
f\left(x^{\mu}, p^{\mu}\right) \propto n\left(x^{\mu}\right) \exp \left(-E^{*} / T\right),
$$

which describes the local equation. Let us use the formula (3.50) and the assumption: $n\left(x^{\mu}\right)=\rho(r)$, which nashat the density profile depends only on the radial conde If we move to other coordinates, the left-hand side is also more relevant. Were getting pretty good:

$$
\begin{align*}
& { }_{-\infty}^{\infty} d \eta_{s} \cosh \left(\eta_{s}-y\right) \exp \left(-\frac{m_{t} \cosh \eta_{t}(r) \cosh \left(\eta_{\underline{s}}-y\right)}{T}\right) . \tag{3.51}
\end{align*}
$$

In the integral, we can introduce substitutions for $(\varphi \vartheta)$ and $\left(\eta_{s} y\right)$, and given appropriate inte- graphical limits, then besult will not depend on φ, y. This is a characteristic property of the boost-invariant expansion. In addition, we can also introduce modified Bessel functions to replace the integrals in the conclusions.

$$
\begin{equation*}
\left.\underset{t}{d 3 N_{t}^{(f o)}}=\operatorname{mitfo}_{t} \mathrm{~J}_{\infty}^{\infty} d r r \rho(r) I_{0} \frac{p_{t} \sinh \eta_{t}(r)}{T} K \underline{0}_{\underline{t}} \frac{m_{t} \cosh _{T} \eta_{t}(\mathrm{r}}{}\right) \tag{3.52}
\end{equation*}
$$

Starting from (3.32) and (3.52) we obtain

$$
\begin{equation*}
S(x, K) d^{4} \mathrm{x}=\delta\left(\tau-\tau_{f o}\right) m_{t} \rho(r) \cosh \left(\eta_{s}-y\right) \exp \left(-\frac{p u_{\mu}^{\mu}}{T}\right) \tau d \tau d n_{s} r d r d \vartheta . \tag{3.53}
\end{equation*}
$$

Recall that $r=V x^{2}+x^{2}$ is a radial

$$
\begin{equation*}
\rho(r)=\Theta(R-r) \quad \eta_{t}=\sqrt{2 \eta_{f}} \frac{R r}{r} . \tag{3.54}
\end{equation*}
$$

This nathat we assume a homogeneous distribution of the particle number density in the case of the freeze-out with radius R and a linear increase in the fireball velocity with increasing radial cordt ...which is explained by the increase in the constant pressure. We retain η_{f} as a parameter that corrects the intensity of the transverse flow. Using this model, we can calculate (3.39) and compare besults with the experiment. In addition, we can fit the assumptions in (3.52), where we can integrate the expression of φ and go from m_{t} to p_{t} and explicitly check:

We can also adjust the shape:

$$
\begin{equation*}
\frac{d N^{2}(f o)}{2 \pi \mathrm{p}_{t} d p_{t} d y}=\frac{\tau R_{f o}}{\sqrt{-\eta_{f}^{m t}}} \int_{\sqrt{ } 2 \pi f} d s s / T_{0} \underline{p_{t} \underline{\sinh (s)}} \kappa T_{1}^{\left.\underline{m_{t}} \underline{\cosh (\mathrm{~s}}\right)} \tag{3.56}
\end{equation*}
$$

The problem with this spectrum estimate is that it is very difficult to include the significant effect of resonance decay. For this reason, the program DRAGON was developed to correct this handicap by means of the Monte Carlo method. See Section 4. The procedure and resultsthe numerical integration in Sections A.1, A.2.

3.7.1 Areas of homogeneity

From the nature of the local thermalization of the expanding fifeballd ${ }^{3 N}{ }^{3 N} \propto \rho(r) \exp \left(-p u_{\mu}{ }^{\mu} / T\right.$)
it is evident that each moving part of the fireball produces a momentum with a temperature difference in its rest fine Therefore, by observing certain momenta, we will locate certain regions of the fireball that produce most of the particles with this momentum. These regions are called homogeneity regions. By further considerations, the following approximate dependencies can be derived [3]:

$$
\begin{aligned}
\text { Rlong } & ={ }_{\tau f o} \overline{\sqrt{\mathrm{~K}^{2}+\mathrm{m}^{\prime}}} \\
R_{s} & =\frac{R^{2}}{1+M_{t} \eta_{f} / T}
\end{aligned}
$$

These quantities measure the size of the homogeneity region, i.e., a certain part of the fireball.

3.7.2 Slope of the spectrum of the forward momentum, freezing temperature

For the analysisfhe spectrum in the for ward momentum we introduce the following quantity:
Slope of thep $\vee^{\vee} r$ ' \downarrow 'lc momentum slope $={ }_{-a m_{t}} \quad \mathrm{n} \frac{d^{3} N}{\text { mtdmtdddy }} \quad$. spectrum: T

1

For limiting cases we have analytical cexts

$$
T_{f o}+m<v_{t}>^{2} \quad \text { non-relativistic' } \quad p_{t} \ll m,
$$

where $T_{f o}$ is the freezeout temperature. Increasing $T_{f o}$ and η_{f} leads to a decrease in $T_{\text {slope }}$ and thus to a flatter spectrum. The spectrum is generally better described by the second relation. We amehat the slope the spectrum will depend on the mass of the as in the non-relativistic ae

If we want to determine $T_{\text {slope }}$ with the measure $T_{f o}$, we have to calculate the spectrum of the same heart for two
different types of particles with different masses m, assuming they have the same $T_{f o}$,
which is not a trivial assumption. Since the interaction between the nucleons takes place at lower temperatures at a higher 1ind is reasonable to and the nucleonpion system is well lenteren when the cross-section is not well differentiated.

Chapter 4

Simulation in DRAGON

4.1 The DRAGON program and its parameters

For the calculations, I used the Dragon [9] program, which uses the Blastwave model to simulate the central energy sources based on the input parameters of the model using the Monte Carlo method. The program proceeds by generating the position of the fireball origin and using (3.47) to calculate the velocity $a t^{\mu}$ of a given fireball. Then it generates the energy according to the difference (3.29) and the direction is It boosts besulting \square city according to ${ }^{\mu}$. The DRAGON program also includes the production of resonances and their subsequent decay into stable particles.

Due to the inherent boost-invariance of the spectrum in the forward momentum of the Blastwave model, there is no need for the interval of thle| acceptance of the particles into the statistics at a rate $y<P$, where P is the constant determining this interval, corresponds more closely to the interval used in the experiment. However, it is also necessary to consider the range of the simulated double maxrap spectrum. To
the difference of the goodness of fit corresponds to the boost invariant, $\quad P /$ maxrap $<$ you need to ensure at least $1 / 5$. I have applied these considerations in later fitting of the experimental data.
This program was run with the following parameter settings in the rams.hpp file":

NOEvents $=14000$	double DropletPart $=0$.	anat1
double fotemp $=0.04$ and 0	0.13; double etaf $=0.3 \mathrm{a}^{2} \mathrm{z}$	
1.2; double Tch $=0.1656$	double mub $=0.028$;	he
uble mus $=0.0069$;	double huen $=0.7$;	para
double minrap = -5..;	double maxrap $=5$ th	mete
double N total $=4.5 * 9000$;	; double rapcenter $=0.0$;	s
double rapwidth $=1.4$;	double $\mathrm{rb}=10 .$. ;	can
double a space $=1.0$;	double tau $=9 .$. ;	be
double rho $2=0.0$;	double tau =9.;	foun
int NOSpec $=277$;		d

the literature [9]

4.2 Programme editing

In order for the program to efficiently implement the requirements set in this wats several adjustments had to be made.

The original DRAGON is conceived in such a way that it generates the particles based on the Blastwave model using the Monte Carlo method with fixed input parameters. The information about the generated data is stored in a file. The problem is the considerable size of the resulting files due to the state statistics. So is the need for data processing. Since this process involves many operations of computing and saving to disk, it is necessarily a very slow process, but the end result is a file of several kilobits in size containing the typical spectrum of interest. Such a concept is unsuitable for repeated calculationsthe same type, which are necessary, for example, when fitting the input parameters of a model. Therefore, I have made some modifications to the program for the purpose of my study:

1. I have added a custom library for working with matrices in C++ based on dynamic arrays (size determined per run) and templates (allows to write libraries independent of the types of variables used).
2. I have added my own library for histogram creation while running the program using the above mentioned libraries for working with matrices. This avoided an entire intermediate step that slowed down the process. The bin boundaries in the histogram are automatically calculated from the set of experimental values, which is useful for later comparison of 6
3. In order to speed up the ctrton, I created a simple bash script that uses the independence of the individual calculations and parallelizes them. For this I used the Grid Engine program on the Sunrise Cluster workstation.
4. I have implemented a program for data analysis using $\chi^{2}\left(n_{f}, T_{f o}\right)$ spectra from DRAGON and from the experiment. The values of χ^{2} are then stored in a file as a matrix. The search minimum can then be easily isolated and a fit to the experimental data can be performed.

The search for the minimum χ^{2} for various parameters η_{f} and $T_{f o}$ is carried out as foxs

1. Cycle
(a) setting of the parameters η_{f} and $T_{f o}$
(b) running DRAGON with given parameters
(c) ' c 'astic generation by DRAGON and histogram filling for the spectrum in p_{T}
2. Calculate $\chi^{2}\left(\eta_{f}, T_{f o}\right)$ of the normalized values with respect to the experimental data
3. Write $\chi^{2}\left(\eta_{f}, T_{f o}\right)$ into the table
4. Find the minima in the table $\chi^{2}\left(\eta_{f}, T_{f o}\right)$.

4.3 Resultstalculations

4.3.1 Experimental data, data normalization

I used the data from the STAR experiment [10], specifically the invariant spectra in the $\mathrm{p}^{\prime} \mathrm{r}^{\prime} 1^{\prime} 1 \mathrm{c}^{\prime} 1 \mathrm{c}^{\prime} 1$ momentum $d N^{2} /\left(2 \pi p_{T} d p_{T} d y\right)\left[(\mathrm{GeV} / \mathrm{c})^{-2}\right]$ versus $p_{T}[\mathrm{GeV} / \mathrm{c}] \mathrm{Au}+\mathrm{Au}$ sr'a`e|zek p r ri rapi- dit² $y-<0.1$ and centrality 56% for 6 types of particles and 3 different energies: $p, \mathrm{p}^{-}, \pi^{ \pm}, K^{ \pm}$at $62.4,130$ and 200 GeV per nucleon.

I have used the approximation of the independence of the spectrum from the rapidity, which is appropriate in the region of the mean rapidity $y=0$. Thus, I have actually replaced $d y=2 * 0.1$. Since the centre of the beam is primarily the parameters η_{f} and $T_{f o}$ and the normalisation of the spectrum can be corrected by the fireball radius R, which was not used, I could normalise $\mathrm{p}^{\text {re }}$ skalovat as needed (see Sect. Therefore, I normalized the data so that $N_{\text {norm }}\left(i, j, E, T_{f o}, \eta_{f}\right.$) for individual bins lies in the interval $(0,100)$. In the following way:

1. I took one non-normalized spectrum $\quad \frac{d N^{2}}{2 \pi p \pi p d y}(i, j, E, \quad, \quad$) from program DRAGON or from experimental data for one of the $i-t h$ type of adts
2. Calculate the norm $A=$ гj
 prob'ih'a all the bins in the histogram and $\left(p_{T}\right)_{j}[\mathrm{GeV} / \mathrm{c}]$ is the total momentum of the j -th
bin in $\mathrm{GeV} / \mathrm{c}$
3. Using this I defined N

$$
\operatorname{stand}_{\operatorname{ards}}\left(i, j, E, T_{f o n}\right)_{f}=100 \text { 粦 } \frac{d N^{2}}{2 \pi p_{r} d p_{r} d y}\left(i, j, E, T_{f o n}\right)_{f}
$$

4.3.2 Calculate χ^{2} to fit the parameters $T_{f o}$ and η_{f}

To fit the parameters of the Blastwave model, I have calculated χ^{2} for the individual settings of the para-meters $T_{f o}$ and η_{f} and the individual energies by the following relation:
where the first sum passes through all analyzed types of particles and the second sum passes through all bins in p_{T}. I entered the data into the following table and 2D graph and found the minima for all 3 energies:

$E[\mathrm{GeV}]$	η_{f}	$T_{f o}[\mathrm{GeV}]$	$\chi_{\min }^{2}(E)$
62,4	0,8	0,08	2,66
130	0,8	0,08	2,35
200	0,9	0,08	0,81

Table 4.1: Values of the parameter $\eta_{f}, T_{f o}[\mathrm{GeV}]$ for finding the minima of the function $\chi^{2}\left(\eta_{f}, T_{f o}\right)$ (see Subsection 4.3.2) and for different energies see also the tables in Section A.3.

Figure 4.1: The $1 \sigma, 2 \sigma$ and 3σ contours around the found minimum of the function $\chi^{2}\left(\eta_{f}, T_{f o}\right)$ of the normalized data from the Monte Carlo generator DRAGON and the experiment $d N^{2} /\left(2 \pi p_{T} d p_{T} d y\right)\left[(\mathrm{GeV} / \mathrm{c})^{-2}\right]$ versus $p_{T}[\mathrm{GeV} / \mathrm{c}] \mathrm{Au}+\mathrm{Au}$ collision at intermediate rapidity
$|\mathrm{y}|<0.1$ and centrality $5-6 \%$ for $p, \mathrm{p}^{-}, \pi^{ \pm}, K^{ \pm}$at 62.4 GeV per nucleon [10]

Figure 4.2: The $1 \sigma, 2 \sigma$ and 3σ contours around the found minimum of the function $\chi^{2}\left(\eta_{f}, T_{f o}\right)$ of the normalized data from the Monte Carlo generator DRAGON and the experiment $d N^{2} /\left(2 \pi p_{T} d p_{T} d y\right)\left[(G e V / c)^{-2}\right]$ versus $p_{T}[\mathrm{GeV} / \mathrm{c}] \mathrm{Au}+\mathrm{Au}$ collision at intermediate rapidity
$|\mathrm{y}|<0.1$ and centrality $5-6 \%$ for $p, \mathrm{p}^{-}, \pi^{ \pm}, \kappa^{ \pm}$at 130 GeV per nucleon [10]

Figure 4.3: The $1 \sigma, 2 \sigma$ and 3σ contours around the found minimum of the function $\chi^{2}\left(\eta_{f}, T_{f o}\right)$ of the normalized data from the Monte Carlo generator DRAGON and the experiment $d N^{2} /\left(2 \pi p_{T} d p_{T} d y\right)\left[(\mathrm{GeV} / \mathrm{c})^{-2}\right]$ versus $p_{T}[\mathrm{GeV} / \mathrm{c}] \mathrm{Au}+\mathrm{Au}$ collision at intermediate rapidity
$|\mathrm{y}|<0.1$ and centrality $5-6 \%$ for $p, \mathrm{p}^{-}, \pi^{ \pm}, K^{ \pm} \mathrm{p}^{\vee}$ ri 200 GeV per nucleon [10]

Figure 4.4: Spectra in the $\mathrm{p}^{\wedge} \mathrm{r}^{\prime} 1^{\nu} \mathrm{c}^{\prime} 1 \mathrm{c}^{\prime} 1$ momentum of the normalized DRAGON data at $T_{f o}=0.08 \mathrm{GeV}$ and the experiment $d N^{2} /\left(2 \pi p_{T} d p_{T} d y\right)\left[(\mathrm{GeV} / c)^{-2}\right]$ versus p_{T} $[\mathrm{GeV} / \mathrm{c}] \mathrm{Au}+\mathrm{Au} \mathrm{Sr}{ }^{\prime} 1^{2}$ zek $\boldsymbol{\phi} \dagger$ at st^{2} medium rapidity $y<0.1$ and centrality 56% for the ' c^{\prime} particles from top left to right in the following acke $p, \mathrm{p}^{-}, \pi^{-}, \pi^{+}, K^{-}, K^{+}$at 62.4 GeV per nucleon [10]

Figure 4.5: Spectra in the $\mathrm{p}^{v} \mathrm{r}^{\prime} 1^{v} \mathrm{c}^{\prime} 1 \mathrm{c}^{\prime} 1$ momentum of the normalized DRAGON data at $T_{f o}=0.08 \mathrm{GeV}$ and the experiment $d N^{2} /\left(2 \pi p_{T} d p_{T} d y\right)\left[(\mathrm{GeV} / c)^{-2}\right]$ versus p_{T} $[\mathrm{GeV} / \mathrm{c}] \mathrm{Au}+\mathrm{Au} \mathrm{Sr}{ }^{\prime} 1^{\text {̌ zek }} \boldsymbol{p} \mid$ at $\mathrm{st}^{\text {² }}$ medium rapidity $y<0.1$ and centrality 56% for the " c^{\prime} particles from top left to right in the following acke $p, \mathrm{p}^{-}, \pi^{-}, \pi^{+}, K^{-}, K^{+}$at 130 GeV per nucleon [10]

Figure 4.6: Spectra in the $\mathrm{p}^{\vee} \mathrm{r}^{\prime} 1^{\nu} \mathrm{c}^{\prime} 1 \mathrm{c}^{\prime} 1$ momentum of the normalized DRAGON data at $T_{f o}=0.08 \mathrm{GeV}$ and the experiment $d N^{2} /\left(2 \pi p_{T} d p_{T} d y\right)\left[(\mathrm{GeV} / c)^{-2}\right]$ versus p_{T} $[\mathrm{GeV} / \mathrm{c}] \mathrm{Au}+\mathrm{Au} \mathrm{Sr}^{\prime} \mathrm{I}^{\text {̌ zek }} \boldsymbol{p} \mid$ at $\mathrm{st}^{\text {² }}$ medium rapidity $y<0.1$ and centrality 56% for the " c^{\prime} particles from top left to right in the following acke $p, \mathrm{p}^{-}, \pi^{-}, \pi^{+}, K^{-}, K^{+}$at 200 GeV per nucleon [10]

Z'av`er

By means of a software modification \ddagger ome outputs the DRAGON program [9], I fit the two most important parameters of the Blastwave model with resonances to the normalized (see subsection 4.3.1) spectra in the higher momentum from the STAR experiment [10]:

$E[\mathrm{GeV}]$	η_{f}	$T_{f o}[\mathrm{GeV}]$	$\chi_{\min }^{2}(E)$
62,4	0,8	0,08	2,66
130	0,8	0,08	2,35
200	0,9	0,08	0,81

Table 4.2: Values of the parameter $\eta_{f}, T_{f o}[\mathrm{GeV}]$ for finding the minima of the function $\chi^{2}\left(\eta_{f}, T_{f o}\right)$ (see subsection 4.3.2) and for different energies see also the tables in section A.3.

Interestingly, when the spectra for the fitted values are quite consistent (see the graphs in subsection 4.3.2), the values of the freezing temperature $T_{f o}$ are roughly half of the previous estimates [15, 16, 17, 18]. There are several explanations:

If the chosen parameters are must be taken intorith the others.
The region in the higher momentum that I have analysed is too narrow.
It is necessary to adjust the parameter for the chemical composition for the energy $62.4[\mathrm{GeV}]$.

The choice of the Blastwave model's frosting surface is not qupite
A possible continuation of this work would be to add as additional data the resultslymmetrization effect - HBT interferometry, see subsection 3.6.

List of sources used

[1] F. Cooper and G. Frye, Phys Rev. D 10 (1974) 186.
[2] J. D. Bjorken, Phys. Rev. D 27 (1983) 140.
[3] T. Cs"org"o and B. T̈̈d Phys. Rev. Rev. C 54 (1996) [arXiv:nucl-th/9901094].
[4] E. Schnederman, J. Sollfrank and U. Heinz, Phys. Rev. Rev. C 48 (1993) 2462 [arXiv:nucl-th/9307020].
[5] J. Letessier and J. Rafelski, Hadrons and Quark-Gluon Plasma, textbook, Cambridge monographs on particle physics, nuclear physics and cosmology
[6] U. A. Wiedemann and U. Heinz, Phys. Rept. 319 (1999) 145 [arXiv:nuclth/9901094].
[7] C.-Y. Wong, Introduction to High-Energy Heavy-Ion Collisions, World Scientific, 1994.
[8] Boris Tonńák Diploma 1aíMFF Komensk'e University 1995.
[9] B. Tomasik, Comp.Phys.Commun. 180 (2009) 1642-1653.
[10] B. I. Abelev et al [STAR Collab.] Phys. Rev. C 74 (2009) 034909.
[11] File:Standard Model of Elementary Particles.svg \#file In Wikipedia : the free encyclopedia [online]. St. Petersburg (Florida) : Wikipedia Foundation, 27 June 2006, 27 June 2009 [cited 2010-04-06]. Available from WWW: http://en.wikipedia.org/wiki/File:Standard _Model _ of _ Elementary _ Particles.svg\# file .
[12] A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn, V.F. Weisskopf, Phys. Rev. Rev. D 9 (1974) 3471
[13] P.J. Siemens, J.O. Rasmussen, Phys Rev. Lett. 42 (1979) 880
[14] E. Shuryak, Phys. Lett. B 78 (1978) 150
[15] W. Broniowski, W. Florkowski, Phys. Rev. Lett. 87 (2001) 272302.
[16] W. Broniowski, M. Chojnacki, W. Florkowski, A. Kisiel, Phys.Rev.Lett. 101 (2008) 022301.
[17] M. Csanad, T. Csorgo , B. Lorstad , A. Ster, Acta Phys.Polon.B35 (2004) 191, e-Print: nucl-th/0311102.
[18] M. Csanad, T. Csorgo, B. Lorstad, A. Ster, J.Phys.G 30 (2005) S1079, e-Print: nucl-th/0403074.

P`r'ilohy

A. 1 Script for MATLAB for the numerical integration of the relation for the spectrum of continuously produced particles

```
e=2.71828;%basic constant
pi=3.141592654;
T=80; %MeV/k - Blastwave model parameters
etaf=0.8;
m=493; %MeV - mass of the particle
kl=@(y,t) cosh(y).* e.^(-cosh(y).*t) ; % work function
i0=@(y,t) e.^(-\operatorname{cos}(y).*t); %other spectrum
maxpt=725; %define the area to be read minpt=275;
n=10;
step=(maxpt-minpt)/(n-1);
Y=1:n; %working variables
X=1:n;
spc=ones (n,2);
norm=0;
for k = 1:n
    pt=minpt+step* (k-1); %MeV/C
    mt=sqrt(pt^2 + m^2);%MeV/c2
    X(k) =pt;
    %follows triple numerical integration
    Y(k)=mt*triplequad(@(r,y,z) r.* i0(z, (pt*sinh(r))/T ) .*
kl(y, (mt* cosh(r))/T ) ,0,etaf*sqrt(2),-5,5,0,2*pi);
spc(k,1)=X (k)/1000; %data for saving to file pt[GeV]
spc(k,2)= Y(k);
norm=norm+(X(k)/1000)*Y(k); %working variable for
                                    %normalize( take pt[GeV])
end
for k = 1:n %normalization of
    spectrum Y(k)=
    Y(k)*100/norm; spc (k,2)=
                                    Y(k) ;
end
%output of
plot(X,Y);
save('numspc.xls', 'spc', '-ascii', '-double', '-tabs')
```


A. 2 Comparison of the spectra numerically calculated for the directly produced particles, from the experiment and from DRAGON

In the following plots I compare the normalized spectra numerically obtained from (3.56) using MATLAB for the spectra of the directly produced ratdrom the STAR experiment and the spectra from the DRAGON program using Monte Carlo to include the resonance in the Blastwave model.

Figure A.7: Comparison of spectra in the for ward momentum of normalized data from numerical integration (3.56) using MATLAB, DRAGON for $\eta_{f}=0.8$ and $T_{f o}=$ $0.08[\mathrm{GeV}]$ and the experiment $d N^{2} /\left(2 \pi p_{T} d p_{T} d y\right)\left[(\mathrm{GeV} / c)^{-2}\right]$ versus $p_{T}[\mathrm{GeV} / \mathrm{c}]$ $\mathrm{Au}+\mathrm{Au}$ sr'ayzek p ri midrapidit'e $-y<0.1$ and centrality 56% for the "c'asticity from above in the following ockr p, π^{-}, K^{-}at 62.4 GeV [10]. The differences in the spectra (3.56) using MATLAB and DRAGON are due to the error from the resonance decay in (3.56)

A. 3 Tables of results $\chi^{2}\left(E, \eta_{f}, T\right)_{f o}$

$\underset{\sim N}{\text { Fin }}$	$T_{f o}[\mathrm{GeV}]$										
		0，04	0，05	0，06	0，07	0，08	0，09	0，1	0，11	0，12	0，13
	0，3	2517，78	2042，87	1681，94	1388，15	1154，58	976，22	822，25	701，68	596，88	513，21
\cdots	0，4	1303，56	1069，94	890，24	744，72	627，92	539，44	459，14	397，77	342，63	299，39
い ひ ※	0，5	549，21	464，72	393，36	337，55	290，43	251，58	218，49	190，59	166，84	146，41
Q ヨ F こ	0，6	181，35	158，10	138，74	120，73	105，22	93，21	81，46	73，12	65，25	58，48
$\stackrel{2}{<}$ ）	0，7	44，85	38，85	32，74	28，53	25，04	22，25	20，26	18，86	18，10	16，94
－	0，8	11，94	7，48	4，75	3，32	2，66	2，57	2，91	3，76	4，91	5，76
$\stackrel{0}{\circ}$	0，9	11，30	7，65	5，80	5，08	5，51	6，26	6，88	8，05	9，05	10，75
我－－	1	15，28	14，16	13，68	14，27	15，21	16，38	17，42	18，51	19，84	21，10
范 $\leq \sim{ }_{0}^{\text {a }}$	1，1	18，87	20，34	21，44	22，95	24，77	26，49	28，58	29，60	31，25	32，25
$\frac{\sigma}{c} \quad 1 \quad \sum_{i}^{2}=$	1，2	22，78	25，99	28，33	30，66	33，11	34，95	37，28	38，63	40，92	41，83
	$T_{f o}[\mathrm{GeV}]$										
$\bigcirc{ }^{\circ} \mathrm{O}$		0，04	0，05	0，06	0，07	0，08	0，09	0，1	0，11	0，12	0，13
研 0	0，3	1428，58	1231，94	1068，82	925，34	799，85	697，95	608，45	531，45	464，20	408，56
	0，4	879，82	755，39	652，30	564，19	488，33	428，48	374，88	329，98	289，57	257，55
い	0，5	437，53	380，07	332，15	290，25	252，19	223，28	196，47	173，80	154，67	137，17
$\begin{array}{ll} 1 \\ 0 & 0 \\ 0 \end{array}$	0，6	162，42	147，31	130，12	115，63	102，13	91，78	81，85	73，46	67，65	60，73
－	0，7	40，93	37，95	33，83	30，71	27，17	24，72	23，16	21，25	21，52	21，19
$\begin{gathered} 0 \\ \hline \end{gathered}$	0，8	9，23	5，80	3，79	2，69	2，35	2，82	4，09	5，70	7，82	9，67
\bigcirc－	0，9	6，62	4，01	2，61	2，80	3，97	5，97	7，89	10，44	12，72	15，77
	1	9，19	9，28	10，85	12，16	14，61	17，80	20，61	23，68	26，03	28，77
7 ज 0	1，1	12，25	15，87	20，45	22，96	26，69	30，40	34，82	36，70	40，54	43，30
$\therefore \underset{\gamma}{0}$	1，2	17，53	23，78	30，05	34，83	38，45	43，00	48，20	50，25	55，03	57，81

Es Mi F H	$T_{f o}[\mathrm{GeV}]$										
		0.04	0.05	0.06	0.07	0.08	0.09	0.1	0.11	0.12	0.13
${ }_{<}^{0} N_{0}{ }^{\circ}$	0.3	1063.80	900.00	765.45	648.54	550.71	472.88	404.27	348.04	299.01	259.56
$\stackrel{\square}{\sim}$ Z +	0.4	615.40	522.71	446.06	379.86	324.02	279.86	241.13	209.59	181.53	159.11
『 ふ	0.5	301.38	260.57	223.67	193.13	165.86	144.20	124.98	108.63	95.76	84.27
$\stackrel{\tilde{0}}{\square}$	0.6	122.54	107.94	93.22	80.98	69.78	61.06	53.20	46.79	41.67	36.80
B．${ }_{0} 0$	0.7	41.89	35.69	30.11	25.44	21.85	18.77	16.50	14.82	13.53	12.53
$\bar{\sim}$	0.8	14.34	9.84	6.83	4.89	3.77	2.99	2.64	2.80	3.26	3.51
こ－	0.9	7.33	3.79	1.89	0.97	0.81	1.03	1.44	2.06	2.82	3.70
$\bigcirc{ }^{\circ}$	1	5.74	3.83	3.28	3.21	3.70	4.49	5.36	6.09	7.02	8.05
＜\quad ¢	1.1	5.49	5.58	6.27	7.01	7.99	9.16	10.58	11.45	12.54	13.44
$\wedge \sum_{i}=$	1.2	6.29	7.94	9.53	11.04	12.38	13.88	15.59	16.53	17.83	18.76

