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Introduction

The nucleus of the t h i r d  ion behaves roughly like a drop of liquid with pˇr ibl iˇznˇe 
homogeneous goose- total, in the rest f rame pˇribliˇznˇe spherically symmetrically 
distributed around the body.  When we observe high-energy col l i s ions  (from 1GeV per 
nucleon) of two t h r e e  ions, even at the more central entrance of the collision, there is a 
lower expansion due to the quan-
these phenomena - the nuclei are 
more and more

the "sight" . In the area of the pathway in the case of the 
heart"

the nuclear liquid is strongly undergrown due to the interaction of extreme conditions - the 
nuclear liquid is strongly undergrown
price. If the energy density reaches the necessary values, the formation of a hypo- tetic 
quark-gluon plasma c a n  occur. The quark phenomena cause the transfer of part of 
the energy of this very dense drop of nuclear matter to the formation of a  particle-
antiparticle p a i r , and the considerable pressure causes  their overexpansion.

Thus, a fireball of many ˇc´ast icˇc´asteˇs is created, expanding more and m o r e  
substantially into space. As the fireball expands, its energy density decreases, 
and this causes two significant r e v e r s e  transitions. First, from a quark-gluon plasma to 
a hadronic
Gas. This transition is called hadronization. Hadron gas is still sufficiently
dense, strongly interacting, so that it can be considered as approximately 
thermalized.

Next, there is  a transition from dense hadronic gas to free hadrons. This transition 
is  cal led freezing. As the fireball cont inues  to expand, the energy density 
continues to decrease and the unstable particles decay. We then detect only the more 
stable particles and try to reconstruct from them the physics of the o r ig ina l  nuclear core 
- the equations of state for the critical s t a t e s  of matter (i.e. The nature of the collective 
behav iour  of  dense nuclear matter), the laws of elementary interactions at high 
energies, the behaviour of a highly excited vacuum.

The question is how to choose a model to describe the high-energy in t e rac t ion  o f  two 
t h r e e  i o n s  and how to choose its parameters. One of the many models  is the 
Blastwave model, whose basic assumptions are the presence of a boost-invariant 
expansion, an overexpansion and the existence of a spec i f ic  superplane in spacetime at 
which the hadronic matter is re leased  in a jump from the fireball. The author of this 
paper attempts to find the best choice of the two main parameters of this model by 
means of the DRAGON program [9], which includes the effect of resonances, by 
fitting the spectra in the f o r w a r d  momentum.
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Chapter 1

Conte
mpor
ary´ 
masses

view of the structure

1.1 Element´arn´ı ˇc´astice

The elementary unit of matter is the elementary particle, which is an indivisible object 
with certain physical properties. Under certain circumstances, stable structures are 
formed over a period of time, which c a n  b e  divided according to the degree of 
elementarity into: cell, molecule, atom, shell and nucleus.

An atom is made up of a shell and a nucleus. The shell of the atom consists  of electrons in 
an arrangement determined by electromagnetic interaction with an oppositely 
charged nucleus. The nucleus is composed of nucleons - protons and neutrons, whose 
constituents are a triplet of quarks.

In the last century it has become apparent t h a t  nature is not limited to protons, neutrons and 
electrons, but is made up of a much l a r g e r  group of particles,  which are in turn 
made up of a r e l a t ive ly  small group of qua r ks  and leptons. This idea is called the  
standard model, which, together with quantum chromodynamics, quantum 
electrodynamics, where interactions are mediated by a powerful intermediate particle, 
constitutes the basis of modern par t ic le  physics.

1.2 Standard model

We divide the elementary particles of the standard model into t h r e e  groups - 
quarks, gluons and intermediate bosons. For each particle there is also a  antǐc particle, 
pˇriˇcemˇz in some cases the particle and the antiˇc particle are indistinguishable. We divide 
quarks and leptons into three generations, the first one being stable and the other  two 
being unstable excitations decaying with weak interaction on the first generation 
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elementary particle.

Quarks are carriers of the colour charge of the strong interaction. There are stars in the 
bound
state to other quarks, so that' the "set" of colours was neutral. Therefore, quarks form stars"
hadron: either a baryon, in which all th ree  quarks have a different colour, or a meson, in 
which
which is a quark and an antiquark, i.e. a colour and its anti-colour. Theoretically, the 
following have been determined
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and more  complex  structures such as the pentaquark, which is composed of four  
quarks and one antiquark.

Quarks never occur individually, but are embedded in the hadron together with other 
quarks. If we tried to pull two quarks apart, their potential energy would grow linearly 
with their distance. The properties of the gluon, the boson that mediates the strong 
interaction, play a very important role here. The gluon is immaterial and h a s  a  
strong interaction charge, which makes it easy to form and interact with other 
gluons. Eventually, as the quark is pulled away, the binding energy increases 
sufficiently to g i v e  r i s e  to a quark-antiquark pair. This recombines with the original 
quarks that were pulled away and we have both quarks back in the bound state.

The interaction between the particles is mediated by intermediate bosons. This means 
that t h e  energy and momentum are t ransferred in quanta by intermediate bosons, 
which exist often very shortly, and so due to the uncertainty principle their mass has  
a  certain uncertainty.

Figure 1.1: Elementary part of the Standard Model. [11]

1.3 Quark-gluon plasma

The quark-gluon plasma, abbreviated QGP, is a state of matter governed by the 
theory of quantum chromodynamics (QCD). The o r i g i n a l  proposition c o n c e r n i n g  the 
quark-gluon plasma is
[14]. If the matter - hadronic gas is condensed into a volume of sufficient energy 
density
gies [1GeVfm−3 ], the quarks of d i f f e r e n t  hadrons find themselves close enough to 
each other, they are destined to be e x c l u s i v e l y  bound  to the i r  hadronic triple or pair 
and can
to move freely. Thus, if we can say t h a t shared" with each other"
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to individual hardons becomes meaningless, then we call this state quark-gluon
with plasma.
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→

However, no  theory can do without experimental facts and therefore we need a device 
for QGP production. We expect that if we have a sufficient energy ratio of two ions tˇeˇzk 
of an element, we will achieve the necessary energy density for the existence of a QGP 
phase for a period of a b o u t  10−23 s. We call such a col l is ion the Little Slice. By 
the nature of the QGP, it is impossible to investigate it d i r e c t l y , but by observing the 
emergence of more hadrons we could learn a lot about this state. For this purpose, 
accelerators and particle detectors are able to measure the edge energy needed for QGP 
formation and can efficiently observe the produced particles.

1.4 QGP and Velky´ tˇresk

In the large volume theory we consider the dissolut ion of a large amount of 
matter from a state of high density. If the theory is consistent with reality, the matter 
must have passed through the QGP state within 10µs after the onset of the Big 
Bang. If we can investigate this state of matter sufficiently,  we will gain further insights 
into the origin of the universe. The problem lies in some of the differences between 
the Big Bang, from which  the universe originated, and the Little Bang, which 
we c a n  create at the accelerator:

1. Much faster hadronization of the fireball of Mal´e tresko.
While for the Big Bang we assume that the expansion of the QGP fireball is 
slowed down by the gravitational acceleration of a huge amount of accumulated 
matter, for the Little Bang we consider the expansion into the vacuum. We  can 
derive the characteristic hadronization times of the QGP of the Large 
Mass Spectrum at τbb = 10 µs and of the Small Mass Spectrum at τmb = 
10−17 µs.

2. Nonzero baryon force  in the fireball of Mal´e t́resko.
In the pos t -a tomic  universe, the baryon force  was practically zero, unlike in the 
ex-perimeter. The asymmetry between matter and antimatter a t  the 
acceleration
is described by the ˇ t i g h t  baryon equation B = NB - NB ̄  . Ideally
B = 0. In the case of a collision, we produce antiparticle-antiparticle pairs, and 
thus the number of detected part ic les  N grows while B is maintained, or at 
least B/N 0. The problem of asymmetry can  theoretically be overcome by 
extrapolation of the baryon chemical potential. In addition, by increasing the energy of 
the interface we increase the number of particles formed.

3. Much h i g h e r  energy density.
According to the Big Bang theory, the universe evolves from a c o n t i n u o u s  
singularity characterized by, among other things, infinite density and 
temperature. By  studying the accelerator we c a n  only reach finite values.
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| ∈ H

j < ψ |ψ

j < ψj |ψ >

j
j j >

j j

Chapter 2

Quantum statistical mechanics

2.1 Quantum statistical mechanics

We define the density matrix as a self-consistent, positive operator with unit 
hundred.

ρˆ∗ = ρˆ ∀|ψ >∈ H < ψ|ρˆψ  > ≥ 0 Tr ρ ˆ  = 1

The density matrix can be defined using the positive terms wj and the vector ψj >
next:

Wˆ = 
Σ 

w |ψj >< ψ 
|j

Wˆ
ρˆ = . (2.1)

Therefore, using the density matrix we can  also calculate the mean value of the 
observable
Oˆ = Oˆ∗:

O¯ = 
Σ 

w 
< ψj |Oˆψ j  > 

= Tr[ρˆOˆ].

In this example we will use the natural units k = c = kB = 1.

2.2 The truest difference between the Grandkano-
nicky´ file

Let us have a quantum system described by two commuting operators
H ˆ ,  Bˆ, i.e. hamiltonian and baryon ̌ćısle. Since we will be working with general states 
and not just the eigenstates of the baryon force operator, we will actually be building a 
grand canonical statistical ensemble where the baryon force is not fixed.

Tr 
Wˆ
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Σ

l

Σ

-

Σ

1 2 w l

l G G

l l

l l l l

l l

Let the Hamiltonian have a discrete spectrum HˆPˆ j  = Ej  Pˆj , where P̂ j is an 
orthogonal projector onto the proper subspace. Let us define the common set of orthogonal
projectors on their own subspaces {Pˆl | H ˆ P ˆ l  = El  Pˆl ∧ B ˆ P ˆ l  = bl Pˆl}.

Let us now consider a statistical ensemble of states with d i f f e r e n t  values of the 
baryon p ressu re  and energy, which we describe by means of the density matrix:

ρˆ = w
l

Pˆl
l Tr P  ̂,

where p´ad´ad´ame assumes that dim P̂ l = Tr P̂ l < +∞.

We know the mean values of the energy E¯ and the baryon ¯  b :

E¯ = Tr[ρ ˆ H ˆ ] = 
Σ 

w Ell  ∧ ¯b = Tr[ρˆBˆ] = 
Σ 

w bll .

Let us now ask what is the nejpravdˇepodobnˇejˇs density matrix, or  equivalently what 
is the nejpravdˇepodobnˇejˇs difference between finding di f ferent  values of the 
energy and the baryo-new force. Introduce entropy:

S = - Tr[ρˆln ρˆ] = - wl ln wl
l

and we will maximize it for  the given conditions, for E ¯ ,  ¯ b .

Λ(w1 , w2 , ...) = - 
Σ 

wl ln(wl ) + α 
Σ 

wl - β 
Σ 

w Ell + ln λ 
Σ 

w bll ,
(2.2)

where β, ln λ are Lagranger multipliers. Sometimes we denote eβµ = λ as fugacity, 
where µ is the baryon chemical potential.

Let us look for an option wj so that the function Λ(w1 , w2 , ...) has  a maximum in it. 
Because

a2 Λ(w , w , ...) = - 
Σ 1 

< 0 on w ∈ (0, 1)

l i e s  the maximum at the stationary point of the function - i.e. at the point where wl is satisfied:

∀l w l ∂Λ = 0.

We're getting a lot out of it:

w = Z-1 e-β(El -µbl ) =< l|Z-1 e-β(Eˆ-µBˆ) |l >,

where ZG = eα−1 = e−β(E l-µbl) is called the partition function.
l
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-

Σ

| | |

i

i=1

1 2 3
i

i 1 2 3

1 2 3 i 1 2 3

G

G

i

And so we have 
enough:

E¯ = -∂β ln ZG B¯ =
1 

∂ 
β µ

ln ZG . (2.3)

For the density matrix in this state we have:

For the partition function 
we have:

e-β(Hˆ-µBˆ)
ρ ˆ  = 

Tr e-β(Hˆ-µBˆ) 
.

Z = Tr e-β(Hˆ-µBˆ) = < n| e-β(Hˆ-µBˆ) |n > . (2.4)
n

S i n c e  Tr is representationally invariant, we c a n  u s e  any ortho-normal basis. This 
allows us to learn a basis of occupation rules for non-interacting particles. Interaction is then 
sometimes introduced by means of fault development.

2.2.1 Bosons and fermions

Consider a system of indistinguishable and non-interacting par t ic les  described by 
two commuting operators, the Hamiltonian Hˆ and the baryon operator B ˆ .  Let the 
single-valued hamiltonian Hˆ (1) take only discrete values Hˆ (1) j >= ϵj j 
>, where j > is an eigenvector. On the Fock space we introduce a symmetrized or 
antisymmetrized bas is  of  the containment elements:

(b )1 (b )2 (b )3

{|(S/A), n1 , n2 , n3 ... >,
where n(b i) are the occupation numbers of the single-variable states |i >,

for which Hˆ (1)|i >= ϵj |i > ∧Bˆ|i >= bi |i >}.

For the total Hamiltonian (Fock space) and baryon space we get:

Hˆ|(S/A), n(b 1), n(b 2), n(b 3)... >= 
Σ 

n(b i)ϵi |(S/A), n(b 1), n(b 2), n(b 3)... >,

Bˆ|(S/A), n(b 1), n(b 2), n(b 3)... >= 
Σ 

n(b i)bi |(S/A), n(b 1), n(b 2), n(b 3)... > .

For the construction of the grand canonical set we use formula (2.4), which h a s  
t h e  form in our chosen base:

Z = 
Σ 

e- Σ∞ ni β(єi -µbi ) = 
Σ Y 

e-ni β(єi -µbi ) .
n n i

Because all combinations of the occupation clauses remain (if formally) contained, we can  
change the order of the sum and product. We draw all states with free N total number 
of particles.



18

i

Σ

Σ

-
Σ

Σ

Σ

T

Σ

±

× ×

Zt = 
,� Qi Σn∞=0 e−n iβ(єi-µbi) for bosons.

, 
Qi

1
n 
=0i

e−n iβ(єi-µbi) for fermions.

We add sums ( for bosons under the condition that−n iβ(єi-µbi) < 1 )

(t)
F +,B- = ± ln(1 ± e−β(є i-µbi)), (2.5)

i

where the sum is the sum of all single-particle states, the upper sign is valid for 
fermions and the lower for bosons.

For the mean value of the baryon p ressu re  from (2.3) we have:

B¯ =
1 

∂ 
β µ

(t)
F +,B-

= Would . (2.6) 
1 ∓ eβ(єi -µb )i

Hence the Bose-Eistain and Fermi-Dirac divide 1  ...the 
difference between-

eβ(ci-µbi) ∓1
If we sum in (2.5) over states with bi > 0 (̌ćastics) and states with bi < 0 (antǐćastics) and assume that the  
possible states for ˇc´astics and antiˇc´astics are the same, we get:

(t)
F +,B- = ±  ln(1 ± e−β(є i-µbi)) + ln(1 ± e−β(є i+µbi)) , (2.7)

i

where the sum of i will now denote the sum of all states with bi > 0. Using
λb i = eβµb i = e 

µ 
we could modify the previous relation to:

(t)
F +,B- = ±  ln(1 ± λb i e−βє i ) + ln(1 ± λ−b i e−βє i ) . (2.8)

i

By replacing the baryon e q u a t i o n  by a lepton equation, we could use the same 
procedure to derive the equations for leptons. By allowing only the s t a t e  bi = 1 we 
obtain a system of ˇc´as t ics  and antiˇc´astics of the same type.

2.2.2 Density of s t a t e s

We consider a quantum mechanical problem with an ˇc´asticity in an infinitely deep 
potential w e l l  - a box < 0, L > < 0, L > < 0, L >. We introduce periodic 
boundary conditions (particles on the circle) which allow for transparent boundary 
conditions and in the later limit V → ∞ the particular boundary conditions will not 
be essential.

ψ(xi = 0) = ψ(xi = L)

We obtain a periodic w a v e  of similar shape to the de Broglie wave, but the momentum
we now have quantum 
annihilation:

The "fineness" of the quantum channel is determined primarily by the size of the box. We have "

ψ(x) = eip→→x

i

ln Z

ln Z

ln Z

ln Z
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Σ ∫

Σ

∞

Σ

Σ

| |

→ 
∞

1 2 3

"

| |

p→ =
2π

L (k1 , k2 , k3 ) where ki ∈ Z.

Let f be a real function of a real variable, ϵn are real numbers. Let's take the sum of
∞

n=0

f 
(ϵn

) =
∞ 

dµ
0

(ϵ)f (ϵ),

where in the integral we generate the measure next:

dµD(ϵ) = d 
∞

n=0

θ(ϵ - ϵn ) .

The measure therefore determines how many "riba" ce l l s  t he re  a r e  at a given point ϵ. If 
there is a function g simply,
with a continuous non-zero first 
derivative gr

trend ϵn . So, for example:

on < 0, +∞ > such that i t  appropriately 
approximates

∀n ∈ N0  |g(n) - ϵn | < δ1  ∧ ∀x ∈ < n - 1, n >: |gr (x) - (g(n) - g(n - 1))| < δ2 ,

where δ1,2 > 0 are sufficiently small. The function can  be set to < 0, + > invert 
and approximate the measure in the previous integral:

dµD (ϵ) ≈ d(g−1 (ϵ))
∞

n=0

f (ϵn ) 
≈

∞
d(g−1

0
(ϵ))f (ϵ) =

∞ dg−1 (ϵ)
dϵ f (ϵ).

0 dϵ

The preceding procedure can be easily generalized to the following higher-dimensional 
variant:

+∞

k , k , k =-∞
f (ϵ(p→(k1  , k2 , k3 ))) 
≈

dk dk dk123 f (ϵ(p→(k1  , k2 , k3 
)) =

R3

d3 p J f ((ϵ(p→)),
R3

where J is a suitable Jacobian. In the case of a  boxed crystal J = V/(2π)3 . To 
simplify the procedure, we work with the integral instead of the sum, which is motivated by the 
fact that  in the limit L the spectrum of the impulse operator is continuous. We replace 
the sum of the a b o v e  procedure by the integral of the following:

[...] = g
i

V d p3

(2π)3 [...], (2.9)

where, in addition, we generally use the degeneracy factor g, which denotes further 
degrees of freedom to expand the phase space into further dimensions. We have 
derived this for periodic boundary conditions or arbitrarily large volumes.

2.2.3 Fermi and Bose ˇc´astic  and antiˇc´astic gases of one 
type

∫ ∫

∫

D

∫ ∫

Σ
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By allowing the s ta te  with baryon ˇc´ ıc´ ıs only bi = ±1 in (2.8), we derive the relation 
for

(t)
F +,B-

mute:
for ˇc´as t ic  and antiˇc´astic gas of one type. If we continue with (2.9), we getln Z
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∫

ln ZF/B (V, β, λ) = ±gV
d p3

(2π)3
ln(1 ± λ 
e

-β√p2+m2

) + ln(1 ± λ−1

e-β√p2+m2 ) ,

(2.10)
where the upper sign is valid for fermions, the lower for bosons and the ˇc ´a s t  at λ−1 
corresponds to antǐćasticity.

Using the relation for the grand canonical potential:

Ω(T, V, µ) =  -PV =  -β−1 ln Zt ,

where P i s  the pressure, we get:

P (β, λ) = ∓g
d p3

(2π)3 [ln(1 ± λ e

-β√p2+m2

) + ln(1 ± λ−1

e-β√p2+m2

)], (2.11)

where g is the degeneracy factor, see the conclus ion  of  subsection 2.9, and where 
the upper sign is valid for fermions, the lower for bosons, and the va lue  at λ−1 
corresponds to antiparticles.

2.2.4 Photon gas

For the photon gas, w e  can derive a simple equation of state from (2.11), which 
corresponds to the theory of blackbody r a d i a t i o n . For the photon gas: m = 0 , ϵi = p, in 
the integral we omit the antiparticle multiplied by λ−1 and set λb i = 1. The last two 
assumptions are justified by the fact that the  photon and the antiphoton are 
indistinguishable particles. Therefore, the addi t ion of a photon can be interpreted as the 
addi t ion of an antiphoton, and the chemical potential can be considered to be 
zero. The feel ing for the antiparticle states disappears also due to the indistinguishability. Therefore, by 
substituting the above assumptions into (2.11), switching to spherical coordinates, 
and introducing the substitution x = p/T, we obtain the equation of state of the 
photon gas:

4πgT 4 ∞
P = - 

(2π)3 dxx2 ln(1 - e−x ).

Because the integral is equal to -π4 /45 we get:

π2
4P = g T

90
, (2.12)

where for photons g = 2 (polarization). D´ıky of the relation resulting from the definitions:

E ¯ (T ) = -∂β ln Zt = -∂β - βPV = 3PV

∫

∫

0
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c

≈

Thus, we obtain a relation for the pressure of t h e  r a d i a t i o n  (the ultrarelativistic limit 
for the limbic frequency, i.e. for p >> m):

P = ϵ(T )/3,

where ϵ(T ) is the energy density of the electromagnetic field. From here we can 
easily de te rmine  the  well-known Stefan-Boltzmann constant.

2.2.5 Bag model

T h e  o r i g i n a l  c o n t r i b u t i o n  to this model is [12]. The bag model is a primitive model 
of the QGP hadronization process. Since we are working with high energies, we c a n
to neglect the masses of all QGP and HG (Hadron Gas) particles due t o  their
Momentum. However, the degeneracy factor is a higher value, which multiplies the 
dimension of the  phase  space. We take in to  account  tha t  t h e  phase space of 
fermions is somewhat smaller  than that of bosons due to the Pauli exclusion 
principle. More precisely, 7/8 times smaller. This is shown in [5] where this 
example is taken from.

7
gQtP = gt + 8 × 2(antǐćastice) × gq + gEW ≈ 56.5 ,

where for the gluons, the quarks:

gt = 2(spin) × (N2 - 1)(color) = 16 , 

gq = 2(spin) × Nc (color) × nf ≈ 15 

,
7

gEW = 2(γ) + 8 × 2(antǐćastice) × (2(spin) × 2(e +µ) + 3(νe Lνµ Lντ L )) = 14.25.

We're replanting: Nc = 3(number of colors), nf  2.5 (effective number of waves). For 
ν we only consider left-handed neutrinos and right-handed antineutrinos and do not 
assume tau production.

We estimate the hadronic gas in the zero point  by the pion gas and add the 
electroweak particles:

gHt = 3(π+ π− π0 ) + gEW ≈ 17.25.

Dur ing  hadronization, both HG and QGP pressures are equal, therefore:

π2
4

π2
4PH = gQtP 90 TH - B = gHt 90 TH . (2.13)

From the pressure for the photon gas modelling the QGP we subtract the so-called 
bag constant

1
B4 ≈ 190MeV obtained by fitting the experimental data, this constant is  re-
presents the latent heat QGP. If we did not introduce this constant, then PQtP > PHt 
would always be valid and matter would be constantly in a quark-gluon 
plasma state. We can also think of the constant B as the pressure that pushes the 
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  9 0   

physical vacuum to
proton 
and

h o l d  it together." We thus estimate the temperature of hadronization: "

1

TH = B4

1
4

π2∆g
≈ 130MeV.
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Another possibility to determine TH is to use the formula for the rad ia t ion  pressure 
(ultra-relativistic limit) and the energy density:

ϵ
P =  . 

3
Since the proton is the most abundant quark system, we can estimate the energy density 
at hadro-nization as:

ϵ = mp = 1GeVfm−3 .
H (1fm)3

Then, by substituting the energy density into the Boltzmann relation, we obtain the 
pressure with which we c a n  estimate the hadronization temperature:

TH = 160MeV.
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Chapter 3

Sub-black boost-invariant 
expanding fireball

3.1 Notes

1. I use formulas in the text:

δ(f (x)) = 
Σ δ(x - xi) where the sum of bˇeˇz´ı pˇres points where f (x) is 

zero (3.1)
i |f r(xi )|

and markings:
δ+ (f (x)) = θ(x)δ(f (x)) (3.2)

2. For the ˇctyˇr vector, we often denote by aµ = a, without emphasis, that i t  is a 
ˇctyˇr vector. However, I use the symbols a andµ

µ = a2 . I denote the three-
dimensional vectors by →a.

3. A frequently used formula for the fourth-order stability of the crystal is:

p2 = E2 - p → 2  = m2  (3.3)

therefore for the following defined Dp

+ µ 2 4 d p3

Dp = 2δ (pµ p - m )d p = (3.4)
E

3.2 Coordinates

3.2.1 Spatiotemporal coordinates

The following coordinates are suitable to describe the sub-black boost invariant expansion:

Let us define the super-surface on which we define the frost. We leave it as a general 
superplane in the f ou r th  space. In the Blastwave model we then introduce a more  
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specific definition.
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t

1 - V2 - V→ 2
0

Above the surface of the frost:

σ = {xµ | superplane in 4-dimensional space} (3.5)

But we will introduce quantities that we will use to describe the individual 
frequencies o f  t h e  expanding fireball in the laboratory system.

Spatial vector of the fourth p a r t  of the fireball in the laboratory system:

xµ = (t, x, y, z) = (t, →x ) (3.6)

Cˇtyˇth velocity vector of t h e  expelling fireball with positional xµ :

Uµ =
dxµ

dτ 
= q

(V0 , V→ 
) . (3.7)

3.2.2 Co-ordinates of the ˇc´astice

For the description of a particle in a laboratory system we define the following values:
Cˇtyˇtyˇ c´asticity :

pµ = (p0 ,  p → ) (3.8)

The speed of the acceleration is in fer ior :
1 p0 + pz

y = 2 ln p0 - p
The velocity of the particle in the laboratory system

(3.9)

Vector of the pˇr´ı´ıc´ıc´ıc´ı 
momentum of the axis:

p→
→v = p0 (3.10)

p → t  = (px , py ) = pt (cos φ, sin φ) (3.11)
Pˇr´ıˇc´ıc´ıc´ı mass of the asterisk:

mt = √m2 + p2 (3.12)

Energy of the particle in the laboratory system:

E = p0 = qm2 + p2 = qm2 + p2 + p2 (3.13)
t z t z

Energy of a particle in the local system xµ :

We can easily see that it  
pays:

E∗ = √ 1
1 - V 2

(p0 - V→ p → ) (3.14)

pµ = (mt cosh y, pt cos φ, pt sin φ, mt sinh y), (3.15)

z
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E∗ = p uµ
µ . (3.16)
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√

3.3 Hydrodynamic description of the 
relativistic relat ion

In the hydrodynamic description of the relativistic relation, we introduce the following signs:

Density of the number of ˇc´as t ic :

n(→x, t)d3 x = n(xµ )d3 x = poˇcet ˇc´astic v volume d3 x v ˇcase t. (3.17)

Total number of ˇc´astic in ˇcase t:

N(t=kost) = 
∫ 

d3 xn(x )µ (3.18)

In general, we do not have to restrict ourselves to a superplane in spacetime 
defined by some value of time, but we c a n  determine the number of worlds 
pass ing through a general superplane in spacetime. The calculation must be carried out in  a  
more  complex  way. This is u s u a l l y  done  in some models of relativistic relations, 
where we define a freezing superplane, which we then integrate over . On this topic, 
see also Subsection 3.5.

Current ˇc´ast ic :
→j(→x, t) = →j(x )µ (3.19)

is a vector such t h a t  for any infinitesimal element of the surface d S →  at the point  
→x i t  g i v e s  t h e  scalar product d→x→ j (→x, t) of the number of particles 
passing through the given element in time dt.
Cˇthˇrstream:

jµ = (n(→x, t),→j(→x, t)) (3.20)
Cˇaspatial distribution of ˇc´astic:

f (xµ , pµ )d xd33 p = the number of particles in the phase volume d xd33 p at the 

point (xµ , pµ ) (3.21) follows from here:

n(xµ ) = 
∫ 

d3 p f (xµ , pµ ), (3.22)

→j(xµ ) = 
∫ 

d3 p →vf (xµ , pµ ). (3.23)
Because the particles are located on the mass shell - i.e. p0  (p→) = p2 + m2 = E, it 
follows from here by the f o r m u l a  (3.4):

ν µ
∫

3 
pν

µ µ
∫

ν µ µ
j (x ) = d p f (x , p ) = Dp p f (x , p ). (3.24)

p0=E
p0

Hence the d´ ale for 
p0 = E: d3jν

µ
E d3p (x

, p→) = pνf 
(xµ

, 
pµ

), (3.25)

d3N (t=bone)

E d3p (t, p →)  = d3 x Ef 
(xµ

, 
pµ

). (3.26)

However , the previous formula is valid only for the integration over  the 

∫
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spacetime plane from constant time. More generally, the worlds are calculated and the 
procedure is more complex. See Section 3.5.
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→ ∞

3.3.1 Differences in the axis

For the description of the difference of particles in spacetime we use the Lorentzian 
invariant difference, which is a generalization of the non-relativistic difference, which is invariant 
u n d e r  the Galilean transformation. This satisfies the requirement that t h e  h i g h e r  
transformed momentum spectrum corresponds in all systems to a higher invariant 
representing the frequency of occurrence of the par t ic le  energy in a given system, 
i.e. p2 + m2. The invariance is  easi ly obtained by trans-forming the differential 
equation of the component of the uncertainty p and by applying the modified 
formula for the energy. The total number of particles on the chosen space-time 
superplane is N .

Lorentz invariant distribution:

Production 
function:

d3 
N E 
d3p

0 d 
N3

= p d3p

= √p2 + m2 d3 
N 
d3
p

(p) (3.27)

d3 N 
S(x, p) such tha t E d3p =

Local  Boltzmann difference :

d4 x S(x, p) (3.28)

f (xµ, p →) =
d3j0

µ

d3p ∝ n(x ) exp(-E ∗/T ), (3.29)

where E∗ is replaced by (3.14).

3.4 Bjorken's boost invariant expansion

At very high energies, we can use the phenomenological model of the divergent invariant 
expansion, in which the separation of the produced particles with a given rapidity is 
approximately uniform in the region between the rapidities of the original 
particles y0 . [2] i.e:

dNB =
Alway
s

N y−1 < y0 , y0 >
0 otherwise.

As a consequence, in the limit of y0  the expansion (even too  high)  occurs in the 
same way in each  system of the set of systems mutually boosted, i.e. in each  such 
system t h e  difference h a s  t h e  shape given by t h e  above relation. The only problem 
with
which we have to deal with is the finality of0 . We can assume that  for boosts in 
the region of medium rapidity y = 0 we approximately  achieve uniformity.

3.5 Differences in momentum during 

f
r
e
e

∫
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zing small" "

The or iginal  work concerning this subsection is [1]. We assume tha t  freezing occurs in 
every  system in the same sub-black proper case, i.e. at τ = τfo . Thus, we do not 
consider the contribution to the eigentime due to the boost-invariant expansion, which is 
consistent with the boost-invariant expansion of the fireball.
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1 2 3

� d p

µ

µ µ

µ µ

�� d3p

d 
j3

3

3

Intuitively, we would assume that  in  order to obtain the difference between the particles, it 
is sufficient to integrate the invariant difference over the freezing surface (3.43):

d N3

E d3p =
E∗ f 
(xν

, pν ) =
σ

at 
pµ

µ
f 
(xν

, pν ),

but this assumption is wrong. Such a definition would violate the law of conservation 
of energy. This can  be proved after the integration of EdN . [1].

Let us define an element of a superplane as a vector which h a s  a  norm equal to the 
surface of the superplane and is a quartic perpendicular to it:

dσµ = ε µνν ν ∂ xα
ν 1 ∂ xβ

ν 2 ∂ xγ
ν 3 dαdβdγ,

where α, β, γ are the coordinates used to parameterize the superplane. Consider now the 
number of worlds that intersect the hyperplane σ at point xµ and have momentum close 

to pµ :

dN (σ, xµ , 
pµ

) = f 
(xµ

, 
pµ

)dσµ 
(xµ

)pµDp = dσµ (xµ
d3jµ

ν) d3p (x
, p→)d3  p, (3.30)

where Dp comes from (3.4) and the second equality follows from (3.25).
meets the requirements of the theorem, let us discuss two choices of hyperplane:

dσ(z=kost) = (0, 0, -dxdydt), dσ(t=kost) = (dxdydz, 0, 0, 0).
�, 
dxdydzd 3n (xν ,  p→)d3  p = number of ˇc´asticities in the phase volume d xd p33

dxdydt 3 (x
�, , p →)d p = the number of numbers of particles, which flow through 

the area dxdy
for ˇ c a s  dt and pr ∈ (p ± dp).

ν

From here we can easily go to the general form of the decomposition dσµ = c dσ ν(x=konst)

where c cν
ν = 1 determines the unit normal to the hyperplane at point x µ̃  . Ov̌ěrme:

dσ pµ
µ = [c pµ

µ ]dσ = 
Σ 

cν [n p(ν)µ ]dσ = 
Σ 

cν [dσ(x ν =kost)pµ ],
ν ν

where n(ν) are unit vectors in the direction of the ν axes. This verified t h a t  (3.30) is the 
number of worlds that intersect the hyperplane σ at point xµ and have momentum close to 
pµ .

Let's now modify the formula for dN into the form of an invariant distribution by 
applying the formula for Dp
(3.4) and for the second equality (3.25) and we get:

d3N (σ)

E d3p = dσ 
pµ

µ

σ

f 
(xν

, pν ) 
=

d3jµ
ν

dσµ d3p (x
, p →) . (3.31)

dN = ν

∫

σ

∫

∫
∫

σ



34

For the production function (3.28) we get:

S(x, p)d4 x = dσµ (x)pµ f (x, p). (3.32)
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∈ { }
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2- ≈ ≈

2

| ∫ |

PN (pµ , G) = AN (pµ , 
G) ,

1 d3p 1 2

3.6 Symmetrization of the production function, 
parameterization

We will now review the theory of the effect of symmetrization for 
indistinguishable bosons on their pro- duct ion functions, but we will not further 
investigate the data related to this part.
Due to the properties of indistinguishable particles, the amplitude AN of the 
production of particles is symmetric or antisymmetric in the momentum of the 
produced particles. Let us consider the amplitude of the production of an N-ˇc´ast ic  
system with momenta pµ arising at f i ve  points xµ ,

i i
where i 1, 2 . . . N . Then due to symmetry and antisymmetry, respectively, the 
truth of
the formation of a system of pa r t i c l e s  with momenta pµ in the region G of the 
following:

AN (pµ , G) = 
∫ 

d3N x 
Σ 

sgn πA˜ (pµ  , xµ ), (pµ  , xµ ) - - - (pµ

 , xµ ) ,
i

t
π∈Sn

π(1) 1 π(2) 2

 

π(N ) N

i i

where for bosons we consider sgn π = 1 and for fermions sgn π i s  the  s ign of the 
permutation.

The effect of symmetrization turns out to be  significant for a small region G and 
i t  had different
momentum in ˇ r ´ades  ∆p∆x k. We  can investigate this effect for the two-variable 
axis variant by introducing a correlation function:

µ µ E E d N6

c(pµ , pµ ) = P2(p1 , p2 ) =
1 2 d3p1d3p2 . (3.33)

1 2 P1 (pµ )P1 (p 
)µ E d3N E d3N

1 2 1 d3p 2 d3p

If we solve the single-variable spectrum using the production function (3.32), we can 
derive [6, 7]

µ µ | ∫ d4 x S(x, K) exp(iqx)|2 | ∫ d4 x S(x, K) exp(iqx)|2

c(p1 , p2 ) = 1 +
E d3N E d3N

= 1 + ∫ 
d4x S(x, p ) 

∫ 
d4y S(y, p ) 

, (3.34)

where q = p p1 2 and K 
=p 1+p2 . We take the so-called smoothness a p p r o x i m a t i o n : p p1 2  K 
and proceed to the new coordinates:

c(p1 , p2 ) - 1 = C(q, K) - 1 ≈

where c(p1 , p2 ) = C(p1 - p ,2p 1+p2 ).

d4 x S(x, K) exp(iqx) 2
(∫ 

d4x S(x, K))2 ,

2

2 d3p



36

3.6.1 N´astin derivation of the symmetrization effect

I was inspired by the  work [8]. The derivation of the symmetrization effect can  be 
suggested as follows:

The amplitude of the production c a n  be thought of as a simple wave function of the 
trajectory and the formation of the trajectory as a meas u r emen t  on this function.
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Univariate production function

Let us consider a point source, in w h ich  a  particle in the eigenstate of the 
momentum operator with a difference r(p) with a phase  φ(x1 ) at the point x1 
independent of its im- pulse c a n  arise. The posi t ion of the phase at a certain point is an 
essential element of this model, because it provides a  kind of minimal  localization of 
the origin of an otherwise delocalized de Broglie wave, which we will see later - when 
centred, it will have a significant effect. In the x-representation we have:

< x|ψ >= 
∫ 

dp r(p) eip(x—x 1) eiφ(x 1) .

This c a n  b e  interpreted as an approximation of the production of a part icle 
arising at a point x1 with the s ta te  p h a s e  φ(x1 ) in the x-representation. Let us now 
consider a more general source in the pulse with a slowly varying difference function 
S = |a(x, p)|2, where a(x, p) is the amplitude:

< x|ψ >= 
∫ 

dp 
∫ 

dxr a(xr , p) eip(x—x ′) eiφ(x ′) .

We can easily proceed to the p-representation, which is more intuitive from the point of 
view of the naming-production of a par t ic le  with a certain momentum, so we 
denote  by A(p):

A(p) =< p|ψ >= 
∫ 

dxr a(xr , p) e—ipx ′ eiφ(x ′) .

The locality of the particle can  be satisfied here, for example, by an exponential ball 
around the distributed momentum and later on we c a n  i m p r o v e  t h e  smoothness of the 
distribution function and thus obtain the same result.

We have squared absolute values and usually a centred plot of a finite time 
interval. Since there is no reason to prefer a different phase at any point, we will center this 
quadrant jeˇstˇe on all choices of the phase function at all points of production:

|A(p)|2 = 
∫ 

dxr
 ∫ 

dxrr a(xr , p)a(xrr, p) e—ip(x ′-x′′) ei(φ(x ′)-φ(x′′)) .

Let us formally reduce the expression of all functions φ(x) :< , + > < π, 
+π > t o  the integral of the previous integral:

dφ ei(φ(x′ )-φ(x′′ )) = δ(xr - xrr).
{φ(x)}

The validity of this relation c a n  be formally verified by discretizing the problem or by 
stat ing the similarity with the Feynmann integral for the propagator of the system, 
whose lagrangian
contains only the function, which is  the complete time derivative of the function of 
time and coordinates.
The result will be the same if we use the Feynmann integral for the propagator
with the same start and end time. For the same starting and ending time

∫
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the time evolution operator is converted into an identity and the propagator into a delta 
function.
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2

∫  

1 1 2 2 1 2 2 2

After the substitution we obtain the complete truth of the production of one particle with 
momentum
p we get:

P1 (p) = |A(p)|2 = 
∫ 

dx |a(x, p)|2 = 
∫ 

dx S(x, p). (3.35)

Two-variable production function

Because we have to symmetrize the wave function, we have enough:

A(p1 , p2 ) = < p1 | < p2 |ψ1 > |ψ2 > + < p2 | < p1 |ψ1 > |ψ2 >=

= dx dx12 a(x1 , p1 )a(x2 , p2 ) e—i(p 1x1+p2x2) +

+ a(x2, p1)a(x1, p2) e-i(p x12 +p x21 ) ei(φ(x1 )+φ(x2 )) =

= 
∫ 

dx1dx2 
ei(φ(x1 )+φ(x2 )) e-i(p x11 +p x )22

  a(x1 , p1 )a(x2 , p2 ) + a(x2 , p1 )a(x1 , p2 ) ei(p 1-p2)(x1-x2) .

Using the smoothness of  the  function a(x, p) in the momenta for p1 ≈ p2 ≈ K =p 1+p2

we have: p + p p + p
a(x , p )a(x , p ) ≈ a(x ,1 2 )a(x ,1 2 ).

But let us use |1 + eiy |2 = 1 + cos(y) and by averaging over the different phases  we get:

P2 (p1 , p2 ) = |A(p1 , p2 )|2 ≈
≈  ∫  

dx dx12 |a(x1 , K)|2|a(x2 , K)|2(1 + cos[(p1 - p2 )(x1 - x2 )]).

By introducing q = p1 - p2 ,  using the possibility of coordinate locking:
∫ 

dx dx12 S(x1 , K)S(x2 , K) e+iq(x 1-x2)

= 
∫ 

dx dx12 S(x1 , K)S(x2 , K) e—iq(x 1-x2)

= 
∫ 

dx dx12 S(x1 , K)S(x2 , 
K)

eiq(x1 -x2 ) + e-iq(x1 -x2 ) 2

= 
∫ 

dx dx12 S(x1 , K)S(x2 , K) cos(q(x1 - x2 )).

So do we:

P2 (p1 , p2 ) =   |A(p1 , p2 

)|2

≈ ∫ 2

dx 

S(x, K)
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2

+ 
∫ dx S(x, K) 

eiqx . (3.36)
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out side long ol

3.6.2 Parameterization

Let us continue with c(p1 , p2 ):

c(p1 , p2 ) - 1 = C(q, K) - 1 ≈
d4 x S(x, K) exp(iqx) 2
(∫ 

d4x S(x, K))2

It turns out that  the right-hand side for a reasonable production function is  often well described 
by the following Gaussian:

C(q, K) - 1 ≈ exp(-q qµν < x˜ µ  x˜ ν  >), (3.37)
where we introduce the marker:

x˜µ  = xµ - < xµ >, < f (x) > 
=K

d4 xS(x, K) f (x)
∫ 

d4xS(x, K)
.

We can eas i ly  c h e c k  the  flatness of the following equations based on the 
definition and equation (3.3). We then use the second of these to fu r the r  ref ine  the 
expression.

4K Kµ
µ + q qν

ν = 4m q K2 µ
µ = 0

and thus

and 
therefo
re

q0 = →q - 
β→

Wh
ere

β→ = 
K→

K0

C(q, K) - 1 ≈ exp(-q qij < (x˜ i - β i  t˜)(x˜ j - βj  t˜) >).
By choosing a suitable system, we can  simplify the relationship further. The problem 
is that the  system we choose will v a r y  depending on the momentum of the pair of 
particles we use. We choose the so-called out-side-long system:
Longitudinal axis: →l in the direction of the bundle,

Outward axis: →o in the direction of the u p p e r  component of a particular K,

Sideway axis: →perpendicular to the front axis.

By choosing these coordinates, we guarantee that β→→s = 0. Therefore, for the central 
heart
we have symmetry about the → l  axis,  this is true for all the x-branes that are linear in 
x˜s  ide,
< x˜ i  ,  x ˜ j  >= 0. Therefore, we introduce the Bertsch-Pratt parametrization of the 
correlation function:

C(q, K) = exp(-q2 2
out(K) - q2 2

side (K) - q2 2
long (K) - 2q q Routside

2 (K)),

Wh
ere 2

out
2

side
R2

∫

R R R

R
R
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long

ol

(3.
38)

=< (x˜ 
- β⊥ t̃ )2 
> (3.39)

=< y˜2 >, (3.40)
=< (z  ̃- βl t̃ )2 >, (3.41)

2 =< (x˜ - β⊥ t˜)(z˜ - βl t̃ ) > . (3.42)

These parameters c a n  be  m e a s u r e d  and compared with the theoretically derived 
production function.

R
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t

1-V 2

z
- √

t

3.7 Blastwave model

The  o r ig ina l  works c o n c e r n i n g  the Blastwave model are [4, 13]. In the Blastwave 
model, we assume that t h e  fireball v e l o c i t y  in the z-axis direction does  not change, i.e., 
Vz = const. The subzero  eigentime :  τ = √t2 - z2

The speed of the pod´eln´: Vz =z ,

where t, z are components of (3.6) and Vz is a component of (3.7).

This allows us , among other things,  to connect the spatial and spatiotemporal velocity.
The subspace velocity: ηs =1 lnt+z =1 ln z1+V

2 t-z 2 1-Vz

However, in the Blastwave model we define a three-dimensional superplane in the 
space on which we define the freezing using the underlying proper time. This can be 
interpreted as meaning that we neglect the contribution to the proper time from the 
sub-black expansion and assume that  the freezing occurs after a certain pˇresnˇe defined 
proper time.

Above the surface of the frost:
σ = {xµ |τ = √t2 - z2 = τfo = const} (3.43)

To describe the sub-black expansion we define:
I n c r e a s e  t h e  speed of the fireball p a r t : V → t  = (Vx , Vy ) = Vt (cos θ, sin θ)

1+ √Vt

P ř́ ı̌ ć ıć ıć ıć ıŕ ıć ıć ı part of the fireball: ηt =1 ln z

2 1 Vt
1-V 2

With this quantity it is necessary to pay attention to the fact that i t  is not a h igher  
speed as it i s  defined. It only o c c u r s  in the region of medium rapidity, i.e. inz = 0.

Radial coordinate of the fireball part: r = √x2 + y2,

where x, y are the components of (3.6) and Vx,y are the components of (3.7).

Using the previous assumptions, we derive the following equations for the four 
vectors xµ and uµ defined in (3.6) and (3.7) describing the parts of the expanding 
fireball:

xµ = (τ cosh ηs , r cos θ, r sin θ, τ sinh ηs ), (3.44)

dxµ = τrdθdηs dτdr, (3.45)
µ 1

u =
 √1 - (V 2 + V 2)

(1, Vt cos θ, Vt sin θ, Vz ), (3.46)

uµ = (cosh(ηs ) cosh(ηt ), cos(θ) sinh(ηt ), sin(θ) sinh(ηt ), sinh(ηs ) cosh(ηt )), (3.47)

Thez = tanh ηs . (3.48)

V = 
tanh ηt . (3.49)t cosh η

s

z
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-

∫

T

- -

T

1 2

∫

∫

We can easily see that it is valid:

E∗ = p uµ
µ = (mt cosh(ηs - y) cosh(ηt ) - pt sinh(ηt ) cos(φ - θ)). (3.50)

Let us use t h e  dσ pµ
µ = τ rmfot cosh(ηs y)dηs drdφ, which  fol lows from the 

properties of the above- surface. We introduce the local Boltzmann difference (3.29):

f (xµ , pµ ) ∝ n(xµ ) exp(-E∗ /T ),

which describes the loca l  equation. Let us use t h e  formula (3.50) and the assumption: 
n(xµ ) = ρ(r), which means that t h e  density profile depends  only on the radial coordinate. 
If we move to other coordinates, the left-hand side is also more relevant. We're 
getting pretty good:

d3N (fo)

m dm dφdy 
= mtτfo

∫ ∞ 
drrρ(r)

∫ 2π
+∞ E∗

dθ dηs cosh(ηs - y) exp(- T ) =t t 0 0 -∞

= mt 
τfo

∞
drrρ(r)

0

 ∫ 2π

dθ exp(- pt sinh ηt (r) cos(φ - θ) 
T

∞ 
dη

-∞
cosh(ηs - y) exp(- mt cosh ηt (r) cosh(ηs - y)) . (3.51)

In the integral, we c a n  introduce substitutions for (φ θ) and (ηs y), and given 
appropr ia te  inte- g raph ica l  limits, then the result will not depend on φ, y. This is a 
characteristic property of the boost-invariant expansion. In addition, we c a n  a l s o  
introduce modified Bessel functions to replace the integrals in the conclusions.

d3N (fo)

m dm dφdy 
= mtτfo

∞
dr rρ(r)I0

  pt sinh ηt (r) K   mt cosh ηt (r
) 

(3.52)
t t 0

Starting from (3.32) and (3.52) we obtain explicitly:

S(x, K)d4 x = δ(τ - τfo )mt ρ(r) cosh(ηs - y) exp(-
p uµ

µ

T )τdτdηs rdrdθ. (3.53)

Recall t h a t  r = √x2 + x2 is a radial coordinate to introduce the assumptions:

ρ(r) = Θ(R - r) ηt = √2ηf
 Rr 

. (3.54)

This means t h a t  we assume a homogeneous distribution of the particle number 
density in the case of the freeze-out with radius R and a linear increase in the fireball 
velocity with increasing radial coordinate, ...which is explained by the increase in the con- 
stant pressure. We retain ηf as a parameter that corrects the intensity of the transverse 
flow. Using this model, w e  can calculate (3.39) and compare the results with the 
experiment. In addition, we  can fit the assumptions in (3.52), where we  c a n  integrate 
the expression of φ and go from mt to pt and explicitly check:

∫

o

 

T

s

1
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 pt sinh( 2ηf
 ) 

 mt cosh( 2ηf
 ) 

d3p

t

 

,��
fo

q

t t f 0

.

d2N (fo)

2πp dptt 
dy

= mt 
τfo

R

Dr rI0
0

√ r
R

K1T

√ r
R . (3.55)

T

We can  also adjust the shape:

d N2(fo)  τ Rfo
∫

 √2ηf  pt sinh(s)  mt cosh(s
) 

2πp dp dy 
=

 √2η mt ds s I T0 K T1 . (3.56)

The problem with this spectrum estimate is that i t  i s  very d i f f i c u l t  to include the 
significant effect of resonance decay. For  this reason, the program DRAGON 
was developed to correct this handicap by means of the Monte Carlo method. See 
Section 4. The procedure and results of the numerical integration in Sec t ions  A.1, A.2.

3.7.1 Areas of homogeneity

From the nature of the l o c a l  thermalization of the expanding fireballd 3N ∝ ρ(r) exp(-p uµ
µ /T 

)
it is evident that  each moving part  of the fireball produces a momentum with a 
temperature difference in its rest frame. Therefore, by observing certain momenta, we 
will locate certain regions of the fireball that produce most of the particles with 
this momentum. These regions are called homogeneity regions. By further 
considerations, the following approximate dependencies can be derived [3]:

T
Rlong = τfo √K2 + m2 

,

R2
Rs = t .

1 + Mt ηf /T
These quantities measure the size of the homogeneity region, i.e., a certain part of  the 
fireball.

3.7.2 Slope of the spectrum of the forward momentum, 
freezing temperature

For the analysis of the spectrum in the f o r w a r d  momentum we introduce the following quantity:

Slope of the p ˇ r ´ ı ´ ı c  momentum 
spectrum: T

slope = -∂m t

l
n d3 N 

mtdmtdθdy

  —1

For limiting cases we have analytical results:

Tslope =
T 1+<vt>

1-<vt> ultra-
relativisticall
y'

pt m

∫
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�, Tfo + m < vt >2  non-relativistic´ pt << m,

where Tfo is the freezeout temperature. Increasing Tfo and ηf leads to a dec rease  in  
Tslope and thus to a f la t ter  spectrum. The spectrum is generally be t ter  described by 
the second relation. We assume that t h e  slope
the spectrum will depend on  the mass of the particle, as  in the non-relativistic case.
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If we want to determine Tslope with the measure Tfo , we have to calculate the 
spectrum of the same heart for two
d i f f e r e n t  types of particles with different  masses m, assuming they  have the same 
Tfo ,
which is not a trivial assumption. Since the interaction between the nucleons takes place 
at lower temperatures at a higher pion, it is reasonable to assume that  the nucleon-
pion system is well thermalized even when the cross-section is not we l l  differentiated.
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Chapter 4

Simulation in DRAGON

4.1 The DRAGON program and its parameters

For the c a l c u l a t i o n s , I used the Dragon [9] program, which u s e s  t h e  Blastwave 
model to simulate the central energy sources based on the input parameters of the 
model using the Monte Carlo method. The program proceeds by generating the 
position of the fireball origin and using (3.47) to calculate the velocity atµ of a 
given fireball. Then it generates the energy according to t h e  difference (3.29) and the 
di rect ion is isotropic. It boosts the resulting �city according toµ . The DRAGON program 
also includes the production of resonances and their subsequent decay into 
stable particles.

Due to the inherent boost-invariance of the spectrum in the f o r w a r d  momentum of the 
Blastwave model, there is no need for the interval of the acceptance of the 
par t ic les  into the statistics at a rate y < P , where P is the constant de termining  
this interval, corresponds more closely to the interval used in the experiment. 
However, it is also necessary to consider the r a n g e  of the simulated double maxrap 
spectrum. To
the difference of the goodness of fit corresponds to the boost invariant, 
you need to ensure at least 1/5. I have applied these considerations in 
later fitting of the experimental data.

P/maxrap <

This program was run with the following parameter settings in the rams.hpp 
file":

NOEvents= 14000 double DropletPart = 0..;
double fotemp = 0.04 a n d  0.13; double etaf = 0.3 a ˇ z  
1.2; double Tch = 0.1656 double mub = 0.028; 
double mus = 0.0069 ; double huen = 0.7; 
double minrap = -5..;  double maxrap = 5th ; 
double N total = 4.5 * 9000 ;  double rapcenter = 0.0; 
double rapwidth = 1.4;  double rb = 10..;
double a space = 1.0; double tau = 9..;
double rho2 = 0.0; double tau = 9.; 
int NOSpec = 277;

An 
expl
anati
on 
of 
the 
para
mete
rs 
can 
be 
foun
d in 
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the literature [9] pa-
"
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4.2 Programme editing

In order for the program to efficiently implement the requirements set in this work, 
several adjustments had to be made.

T h e  o r i g i n a l  DRAGON is conceived in such a way that i t  generates the part icles  based on 
the  Blastwave model using the Monte Carlo method with fixed input parameters. The 
information about the generated d a t a  is  stored in a file. The problem is the 
considerable size of the resulting files due to the state statistics. So is the need for 
data processing. Since this process involves many operations of comput ing  and 
sav ing  to disk, it is necessarily a very slow process, but the end result is a file of 
several kilobits in size containing the typical spectrum of in te res t . Such a concept is 
unsuitable for repeated calculations of the same type, which are necessary, for example, 
when fitting the input parameters of a model. Therefore, I have made some 
modifications to the program for the purpose  of  m y  study:

1. I have added a custom library for working with matrices in C++ based on 
dynamic arrays (size determined per run) and templates (allows to write 
libraries independent of the t y p e s  of variables used).

2. I have added my own library for histogram creation while running the 
program using the a b o v e  mentioned libraries for working with matrices. 
This avoided an entire intermediate step that slowed down the process. The b i n  
boundaries in the histogram are automatically calculated from the set of 
experimental values, which is useful for later comparison of the results.

3. In order to speed up the calculation, I created a simple bash script that uses  the  
independence of the individual c a l c u l a t i o n s  and parallelizes them. For this I 
used  the  Grid Engine program on the Sunrise Cluster workstation.

4. I have implemented a program for data analysis using χ2 (ηf , Tfo ) spectra 
from DRAGON and from the experiment. The values of χ2 are then stored in a 
file as a matrix. The search minimum can then be easily isolated and a fit to 
the experimental data can be performed.

The search for the minimum χ2 for v a r i o u s  parameters ηf and Tfo is carried out as follows:

1. Cycle

(a) setting of the parameters ηf and Tfo

(b) running DRAGON with given parameters
(c) ˇc´as t ic  generation by DRAGON and histogram f i l l i ng  for the spectrum 

in pT

2. Calcu la te  χ2 (ηf , Tfo ) of the normalized values with respect to the experimental 
d a t a

3. Write χ2 (ηf , Tfo ) into the table
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4. Find the minima in the table χ2 (ηf , Tfo ).
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2πp dp dy

Σ

stand
ards

fo f A 2πpT dpT dy fo f

4.3 Results of the calculations

4.3.1 Experimental data, data normalization

I used the data from the STAR experiment [10], specifically the invariant spectra in the 
p ˇ r ´ ı ´ ı c ´ ı c ´ ı  momentum dN2 /(2πpT dpT dy)[(GeV/c)—2 ] versus pT [GeV/c] Au+Au 
s r ´ a ˇ e ˇ z e k  p ˇ r i  rapi- ditˇe y < 0.1 and centrality 5 6% for 6 t y p e s  of particles and 
3 d i f f e r e n t  energies: p, p¯, π± , K± a t  62.4, 130 and 200 GeV per nucleon.

I have used the approximation of the independence of the spectrum from the rapidity, 
which is appropriate in the region of the mean rapidity y = 0. Thus , I have actually 
replaced dy = 2 ∗ 0.1. Since the centre of the beam is primarily the parameters ηf 
and Tfo and the normalisation of the spectrum can be corrected by the fireball radius 
R, which was not used, I could normalise pˇreˇskalovat as needed (see Sect. 
Therefore, I normalized the data so that Nnorm (i, j, E, Tfo , ηf ) for individual bins lies 
in the interval (0, 100). In the following way:

1. I took one non-normalized spectrum dN2

T T
(i, j, E, 
Tfo

, 
ηf

) from pro-

gram DRAGON or from experimental data for one of the i - th  type of particles.
2. Calculate the norm A = 

Σj
dN 2

2πpT dpT dy(i, j, E, 
Tfo

, 
ηf

) ∗ (pT )j [GeV/c], where the 
sum

prob´ıh´a all the bins in the histogram and (pT )j [GeV/c] is the t o t a l  momentum of 
the j-th
bin in GeV/c

2

3. Using t h i s  I defined N (i, j, E, T , η ) =100 ∗ dN (i, j, E, T , η ).

4.3.2 Calculate χ2 to fit the parameters Tfo and ηf

To fit the parameters of the Blastwave model, I have calculated χ2 for the 
individual settings of the para-meters  Tfo and ηf and the individual energies by the 
following relation:

 2

χ2 (E, Tfo , ηf ) =
Σ   Nnorm.DRAtON (i, j, E, Tfo, ηf ) - Nnorm.exp.(i, j, E)

,
σnorm.exp(i, j, E)2

(castice)i (pT )j

where the first sum passes through all analyzed types of particles and the second sum 
passes through all bins in pT . I entered the data into the fo l lowing  table and 2D 
graph and found the minima for all 3 energies:
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E [GeV] ηf Tfo [GeV] χ2  (E)min
62,4 0,8 0,08 2,66
130 0,8 0,08 2,35
200 0,9 0,08 0,81

Table 4.1: Values of the parameter ηf , Tfo [GeV] for finding the minima of 
the function χ2 (ηf , Tfo ) (see Subsection 4.3.2) and for d i f f e r e n t  energies see also 
the tables in Section A.3.

Tfo [GeV]

Figure 4.1: The 1σ, 2σ and 3σ contours around the found minimum of the function 
χ2 (ηf , Tfo ) of the normalized data from the Monte Carlo generator DRAGON and 
the experiment dN2 /(2πpT dpT dy)[(GeV/c)—2 ] versus pT [GeV/c] Au+Au col l i s ion  a t  
intermediate rapidity
|y| < 0.1 and centrality 5 - 6% for p, p¯, π± , K± a t  62.4 GeV per nucleon [10]

η
f
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Tfo [GeV]

Figure 4.2: The 1σ, 2σ and 3σ contours around the found minimum of the function 
χ2 (ηf , Tfo ) of the normalized data from the Monte Carlo generator DRAGON and 
the experiment dN2 /(2πpT dpT dy)[(GeV/c)—2 ] versus pT [GeV/c] Au+Au col l i s ion  a t  
intermediate rapidity
|y| < 0.1 and centrality 5 - 6% for p, p¯, π± , K± a t  130 GeV per nucleon [10]

Tfo [GeV]

Figure 4.3: The 1σ, 2σ and 3σ contours around the found minimum of the function 
χ2 (ηf , Tfo ) of the normalized data from the Monte Carlo generator DRAGON and 
the experiment dN2 /(2πpT dpT dy)[(GeV/c)—2 ] versus pT [GeV/c] Au+Au col l i s ion  a t  
intermediate rapidity
|y| < 0.1 and centrality 5 - 6% for p, p¯, π± , K± p ˇ r i  200 GeV per nucleon [10]

η
f

η
f
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Figure 4.4: Spectra in the p ˇ r ´ ı ˇ c ´ ı c ´ ı  momentum of the normalized DRAGON 
data at Tfo = 0.08 GeV and the experiment dN2 /(2πpT dpT dy)[(GeV/c)—2 ] versus pT 
[GeV/c] Au+Au Sr´ ı ˇzek pˇ a t  stˇmedium rapidity y < 0.1 and centrality 5 6% for 
the ˇc´ particles from top left to right in the following order: p, p¯, π— , π+ , K— , K+ at 
62.4 GeV per nucleon [10]
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Figure 4.5: Spectra in the p ˇ r ´ ı ˇ c ´ ı c ´ ı  momentum of the normalized DRAGON 
data at Tfo = 0.08 GeV and the experiment dN2 /(2πpT dpT dy)[(GeV/c)—2 ] versus pT 
[GeV/c] Au+Au Sr´ ı ˇzek pˇ a t  stˇmedium rapidity y < 0.1 and centrality 5 6% for 
the ˇc´ particles from top left to right in the following order: p, p¯, π— , π+ , K— , K+ at 
130 GeV per nucleon [10]
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Figure 4.6: Spectra in the p ˇ r ´ ı ˇ c ´ ı c ´ ı  momentum of the normalized DRAGON 
data at Tfo = 0.08 GeV and the experiment dN2 /(2πpT dpT dy)[(GeV/c)—2 ] versus pT 
[GeV/c] Au+Au Sr´ ı ˇzek pˇ a t  stˇmedium rapidity y < 0.1 and centrality 5 6% for 
the ˇc´ particles from top left to right in the following order: p, p¯, π— , π+ , K— , K+ at 
200 GeV per nucleon [10]
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Z´avˇer

By means of a software modification of some ou tpu t s  of the DRAGON program [9], I fit the 
two m o s t  important parameters of the Blastwave model with resonances to the 
normalized (see subsection 4.3.1) spectra in the h i g h e r  momentum from the 
STAR experiment [10]:

E [GeV] ηf Tfo [GeV] χ2  (E)min
62,4 0,8 0,08 2,66
130 0,8 0,08 2,35
200 0,9 0,08 0,81

Table 4.2: Values of the parameter ηf , Tfo [GeV] for finding the minima of 
the function χ2 (ηf , Tfo ) (see subsection 4.3.2) and for d i f f e r e n t  energies see also 
the tables in section A.3.

Interestingly,  when the spectra for the fitted values are quite consistent (see the 
graphs in subsection 4.3.2), the values of the freezing temperature Tfo are 
roughly half of the previous estimates [15, 16, 17, 18]. There a r e  several 
explanations:

  I f  the chosen parameters are essential, they must be taken into account with the others.

  The region in the h i g h e r  momentum that I have analysed is too narrow.

  It is necessary to adjust the parameter for the chemical composi t ion  for the energy 
62.4 [GeV].

  The choice of the Blastwave model's frost ing surface is not appropriate.

A poss ib le  continuation of this  work would be to add as a d d i t i o n a l  data the 
results of the symmetrization effect - HBT interferometry, see subsection 3.6.
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A.1 Script for MATLAB for the numerical 
integration of the relation for the spectrum 
of continuously produced part ic les

e=2.71828;%basic constant 
pi=3.141592654;

T=80; %MeV/k - Blastwave model parameters 
etaf=0.8;

m=493; %MeV - mass of the particle

k1=@(y,t) cosh(y).* e.ˆ(-cosh(y).*t); % work function 
i0=@(y,t) e.ˆ(-cos(y).*t); %other spectrum

maxpt=725; %define the area to be read minpt=275;
n=10;
step=(maxpt-minpt)/(n-1);

Y=1:n; %working variables 
X=1:n;
spc=ones(n,2); 
norm=0;

for k = 1:n
pt=minpt+step*(k-1); %MeV/c 
mt=sqrt(ptˆ2 + mˆ2);%MeV/c2

X(k)=pt;
%follows triple numerical integration
Y(k)= mt*triplequad(@(r,y,z) r.* i0(z, (pt*sinh(r))/T ) .*

k1(y, (mt*cosh(r))/T ) ,0,etaf*sqrt(2),-5,5,0,2*pi);

spc(k,1)=X (k)/1000; %data for saving to file pt[GeV] 
spc(k,2)= Y(k);
norm=norm+(X(k)/1000)*Y(k); %working variable for

%normalize( take pt[GeV])
end

for k = 1:n %normalization of 
spectrum Y(k)= 
Y(k)*100/norm; spc(k,2)=

Y(k);
end

%output of 
plot(X,Y);
save('numspc.xls', 'spc', '-ascii', '-double', '-tabs')
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A.2 Comparison of the spectra numerically 
calculated for the directly produced 
particles, from the experiment and from 
DRAGON

In the following plots I compare the normalized spectra numerically obtained from 
(3.56) using MATLAB for the spectra of the d i r e c t l y  produced particles from the STAR 
experiment and the spectra from the DRAGON program us ing  Monte Carlo to include 
the resonance in the Blastwave model.
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Figure A.7: Comparison of spectra in the f o r w a r d  momentum of normalized data from 
numerical integration (3.56) using MATLAB, DRAGON for ηf = 0.8 and Tfo = 
0.08 [GeV] and the experiment dN2 /(2πpT dpT dy)[(GeV/c)—2 ] versus pT [GeV/c] 
Au+Au s r ´ a ˇ z e k  p ˇ r i  midrapidit´e y < 0.1 and centrality 5 6% for the ˇc´asticity 
from above in the following order: p, π— , K— a t  62.4 GeV [10]. The differences 
in the spectra (3.56) using MATLAB and DRAGON are due to the error from the 
resonance decay in (3.56)
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A.3 Tables of results χ2 (E, ηf , T )fo



Tfo [GeV]

ηf

Tfo [GeV]

ηf

Table A
.3: V

alues of χ
2 (η

f  , T
fo  ) norm

alized data from
 the M

onte C
arlo generator 

D
R

A
G

O
N

 and the experim
ent dN

2 /(2πp
T  dp

T  dy)[(G
eV/c) —

2 ] versus p
T  [G

eV
/c] 

A
u+A

u
sr´aˇaˇzek pˇri m

idrapidity |y| < 0.1 and centrality 5 - 6%
 for p, p¯, π

± , K
± pˇri 

62.4 G
eV

(first table), 130 G
eV

 (second table) [10]

50

0,04 0,05 0,06 0,07 0,08 0,09 0,1 0,11 0,12 0,13
0,3 2517,78 2042,87 1681,94 1388,15 1154,58 976,22 822,25 701,68 596,88 513,21
0,4 1303,56 1069,94 890,24 744,72 627,92 539,44 459,14 397,77 342,63 299,39
0,5 549,21 464,72 393,36 337,55 290,43 251,58 218,49 190,59 166,84 146,41
0,6 181,35 158,10 138,74 120,73 105,22 93,21 81,46 73,12 65,25 58,48
0,7 44,85 38,85 32,74 28,53 25,04 22,25 20,26 18,86 18,10 16,94
0,8 11,94 7,48 4,75 3,32 2,66 2,57 2,91 3,76 4,91 5,76
0,9 11,30 7,65 5,80 5,08 5,51 6,26 6,88 8,05 9,05 10,75

1 15,28 14,16 13,68 14,27 15,21 16,38 17,42 18,51 19,84 21,10
1,1 18,87 20,34 21,44 22,95 24,77 26,49 28,58 29,60 31,25 32,25
1,2 22,78 25,99 28,33 30,66 33,11 34,95 37,28 38,63 40,92 41,83

0,04 0,05 0,06 0,07 0,08 0,09 0,1 0,11 0,12 0,13
0,3 1428,58 1231,94 1068,82 925,34 799,85 697,95 608,45 531,45 464,20 408,56
0,4 879,82 755,39 652,30 564,19 488,33 428,48 374,88 329,98 289,57 257,55
0,5 437,53 380,07 332,15 290,25 252,19 223,28 196,47 173,80 154,67 137,17
0,6 162,42 147,31 130,12 115,63 102,13 91,78 81,85 73,46 67,65 60,73
0,7 40,93 37,95 33,83 30,71 27,17 24,72 23,16 21,25 21,52 21,19
0,8 9,23 5,80 3,79 2,69 2,35 2,82 4,09 5,70 7,82 9,67
0,9 6,62 4,01 2,61 2,80 3,97 5,97 7,89 10,44 12,72 15,77

1 9,19 9,28 10,85 12,16 14,61 17,80 20,61 23,68 26,03 28,77
1,1 12,25 15,87 20,45 22,96 26,69 30,40 34,82 36,70 40,54 43,30
1,2 17,53 23,78 30,05 34,83 38,45 43,00 48,20 50,25 55,03 57,81



Tfo [GeV]

ηf

Table A
.4: V

alues of χ
2 (η

f  , T
fo  ) norm

alized data from
 the M

onte C
arlo generator 

D
R

A
G

O
N

 and the experim
ent dN

2 /(2πp
T  dp

T  dy)[(G
eV/c) —

2 ] versus p
T  [G

eV
/c] 

A
u+A

u
sr´aˇaˇzek pˇri m

idrapiditˇe |y| < 0.1 and centrality 5 - 6%
 for p, p¯, π

± , K
± pˇri 

200 G
eV

[10]

51

0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13
0.3 1063.80 900.00 765.45 648.54 550.71 472.88 404.27 348.04 299.01 259.56
0.4 615.40 522.71 446.06 379.86 324.02 279.86 241.13 209.59 181.53 159.11
0.5 301.38 260.57 223.67 193.13 165.86 144.20 124.98 108.63 95.76 84.27
0.6 122.54 107.94 93.22 80.98 69.78 61.06 53.20 46.79 41.67 36.80
0.7 41.89 35.69 30.11 25.44 21.85 18.77 16.50 14.82 13.53 12.53
0.8 14.34 9.84 6.83 4.89 3.77 2.99 2.64 2.80 3.26 3.51
0.9 7.33 3.79 1.89 0.97 0.81 1.03 1.44 2.06 2.82 3.70

1 5.74 3.83 3.28 3.21 3.70 4.49 5.36 6.09 7.02 8.05
1.1 5.49 5.58 6.27 7.01 7.99 9.16 10.58 11.45 12.54 13.44
1.2 6.29 7.94 9.53 11.04 12.38 13.88 15.59 16.53 17.83 18.76


