JINR, DUBNA Student Practice

SIMULATION OF SOFT PHOTON CALORIMETER

Participant list

Vaclav Kosar

Czech Technical University in Prague

Viktor Burian

Czech Technical University in Prague

Andra-Georgia Ibanescu

University of Bucharest

JINR group: High Multiplicty (Baldin and Veksler Laboratory of High Energy Physics)

Igor Rufanov

[®]Elena Kokoulina

Vladimir Nikitin

Physics goals

- To understand photon production and it's importance for collective phenomena explanations.
- To get familiar with GEANT, PYTHIA, PAW
- To simulate the spectra of photons produced in high energy collisions
- To understand how a electromagnetic calorimeter works.
- To simulate the energy deposition spectra of photons in a calorimeter.

Study of anomalous soft photons

- Soft photons: $p_{\gamma}(transverse) < 50 \text{MeV}$ in pp, pA or AA collisions
- Expected sources: hadronic bremsstrahlung radiation and annihilation
- Problems: excess of soft photons for high energy collisions
- Importance: study of collective behavior of particles in high energy collisions.

Soft photon distribution in CMS

Isotropical with energy distribution:

SVD setup

BGO crystals

- capability to measure low energy deposit $E_{min} < 5 MeV$

- the dimension of one cell $4 \times 4 \times 120 \ \text{Cm}^3$

- localization of photon σ < 2 cm.

The electromagnetic calorimeter

Red - BGO crystals

Blue - organic scintillator - cutting the charged particles

Green - Veto energy leakages

From GEANT

Estimation of dimensions of crystals, $E_{\gamma} = 100$ MeV

Energy response of the calorimeter

Detections of photons by BGO detector

Conclusion

- In spite of small dimension of detector it allows one to detect low energy photons with small background contribution from high energy particles.
- This is achieved due to VETO detector and measurement of location of incoming photons.
- Signal of soft photons is detectable for cross section of several mb, according to the simulation.

Thank you!

Our SPG (soft photons generator) code

Generate total momentum of photons in CMS

 $p = p_0 \exp(rand(0) / A)$

Generate the direction of photons in CMS

$$x, y, z = 2*(rand(0) - 0.5)$$

$$p_{CMS} = p * x / r$$

 $r = \sqrt{x^2 + y^2 + z^2}$

- Calculate the photons momentum in LS
- $p_{LS}(1,2) = p_{CMS}(1,2)$ $p_{LS}(3) = \gamma(\frac{p*z}{r} + v_{CMS}*p)$
- Calculate energy of photons in LS

$$E_{LS} = \sqrt{p_{LS}^2(1) + p_{LS}^2(2) + p_{LS}^2(3)}$$